WaveFake: A Data Set to Facilitate Audio DeepFake Detection

Related tags

Deep LearningWaveFake
Overview

WaveFake: A Data Set to Facilitate Audio DeepFake Detection

logo

This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper WaveFake.

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have - so far - been neglected. In this paper, we aim to narrow this gap. We present a novel data set, for which we collected ten sample sets from six different network architectures, spanning two languages. We analyze the frequency statistics comprehensively, discovering subtle differences between the architectures, specifically among the higher frequencies. Additionally, to facilitate further development of detection methods, we implemented three different classifiers adopted from the signal processing community to give practitioners a baseline to compare against. In a first evaluation, we already discovered significant trade-offs between the different approaches. Neural network-based approaches performed better on average, but more traditional models proved to be more robust.

Dataset & Pre-trained Models

You can find our dataset on zenodo and we also provide pre-trained models.

Setup

You can install all needed dependencies by running:

pip install -r requirements.txt

RawNet2 Model

For consistency, we use the RawNet2 model provided by the ASVSpoof 2021 challenge. Please download the model specifications here and place it under dfadetect/models as raw_net2.py.

Statistics & Plots

To recreate the plots/statistics of the paper, use:

python statistics.py -h

usage: statistics.py [-h] [--amount AMOUNT] [--no-stats] [DATASETS ...]

positional arguments:
  DATASETS              Path to datasets. The first entry is assumed to be the referrence one. Specified as follows 
   
    

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to concider.
  --no-stats, -s        Do not compute stats, only plots.

   

Example

python statistics.py /path/to/reference/data,ReferenceDataName /path/to/generated/data,GeneratedDataName -a 10000

Training models

You can use the training script as follows:

python train_models.py -h

usage: train_models.py [-h] [--amount AMOUNT] [--clusters CLUSTERS] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--retraining RETRAINING] [--ckpt CKPT] [--use_em] [--raw_net] [--cuda] [--lfcc] [--debug] [--verbose] REAL FAKE

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --batch_size BATCH_SIZE, -b BATCH_SIZE
                        Batch size (default: 8).
  --epochs EPOCHS, -e EPOCHS
                        Epochs (default: 5).
  --retraining RETRAINING, -r RETRAINING
                        Retraining tries (default: 10).
  --ckpt CKPT           Checkpoint directory (default: trained_models).
  --use_em              Use EM version?
  --raw_net             Train raw net version?
  --cuda, -c            Use cuda?
  --lfcc, -l            Use LFCC instead of MFCC?
  --debug, -d           Only use minimal amount of files?
  --verbose, -v         Display debug information?

Example

To train all EM-GMMs use:

python train_models.py /data/LJSpeech-1.1/wavs /data/generated_audio -k 128 -v --use_em --epochs 100

Evaluation

For evaluation you can use the evaluate_models script:

python evaluate_models.p -h

usage: evaluate_models.py [-h] [--output OUTPUT] [--clusters CLUSTERS] [--amount AMOUNT] [--raw_net] [--debug] [--cuda] REAL FAKE MODELS

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.
  MODELS                Directory containing model checkpoints.

optional arguments:
  -h, --help            show this help message and exit
  --output OUTPUT, -o OUTPUT
                        Output file name.
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --raw_net, -r         RawNet models?
  --debug, -d           Only use minimal amount of files?
  --cuda, -c            Use cuda?

Example

python evaluate_models.py /data/LJSpeech-1.1/wavs /data/generated_audio trained_models/lfcc/em

Make sure to move the out-of-distribution models to a seperate directory first!

Attribution

We provide a script to attribute the GMM models:

python attribute.py -h

usage: attribute.py [-h] [--clusters CLUSTERS] [--steps STEPS] [--blur] FILE REAL_MODEL FAKE_MODEL

positional arguments:
  FILE                  Audio sample to attribute.
  REAL_MODEL            Real model to attribute.
  FAKE_MODEL            Fake Model to attribute.

optional arguments:
  -h, --help            show this help message and exit
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --steps STEPS, -m STEPS
                        Amount of steps for integrated gradients.
  --blur, -b            Compute BlurIG instead.

Example

python attribute.py /data/LJSpeech-1.1/wavs/LJ008-0217.wav path/to/real/model.pth path/to/fake/model.pth

BibTeX

When you cite our work feel free to use the following bibtex entry:

@inproceedings{
  frank2021wavefake,
  title={{WaveFake: A Data Set to Facilitate Audio Deepfake Detection}},
  author={Joel Frank and Lea Sch{\"o}nherr},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2021},
}
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022