Pytorch Implementation for Dilated Continuous Random Field

Overview

DilatedCRF

Pytorch implementation for fully-learnable DilatedCRF.


If you find my work helpful, please consider our paper:

@article{Mo2022dilatedcrf,
    title={Dilated Continuous Random Field for Semantic Segmentation},  
    author={Xi Mo, Xiangyu Chen, Cuncong Zhong, Rui Li, Kaidong Li, Sajid Usman},
    booktitle={IEEE International Conference on Robotics and Automation}, 
    year={2022}  
}

Easy Setup

Please install these required packages by official guidance:

python >= 3.6
pytorch >= 1.0.0
torchvision
pillow
numpy

How to Use

1. Prepare dataset

  • Dowload suction-based-grasping-dataset.zip (1.6GB) [link]. Please cite relevant paper:
@article{zeng2018robotic, 
    title={Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching},  
    author={Zeng, Andy and Song, Shuran and Yu, Kuan-Ting and Donlon, Elliott and Hogan, Francois Robert and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu,     Melody and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto},  
    booktitle={Proceedings of the IEEE International Conference on Robotics and Automation}, 
    year={2018}  
}
  • Train your own semantic segmentation classifers on the suction dataset, generate training samples and test samples for DilatedCRF. You can also download my training set and test set (872MB) [link], extract the default folder dataset to the main directory.
    NOTE: Customized training and test samples must be organized the same as the default dataset format.

2. Train network

  • If you want to customize training process, modify utils/configuration.py parameters according to its instructions.

  • Train DilatedCRF use default dataset folder, or customized dataset path by -d argument.
    NOTE: checkpoints will be written to the default folder checkpoint.

    python DialatedCRF.py -train
    

    or restore training using the lattest .pt file stored in default folder checkpoint:

    python DialatedCRF.py -train -r
    

    or you may want to use specified checkpoint:

    python DialatedCRF.py -train -r -c path/to/your/ckpt
    

    Note that checkpoint file must match the parameter "SCALE" specified in utils/configuration.py. To specify customized dataset folder, use:

    python RGANet.py -train -d your/dataset/path
    

3. Validation

  • Complete dataset folder mentioned above and a valid checkpoint are required. You can download my checkpoint for "SCALE" = 0.25 (42.4MB) [link], be sure to adjust corresponding configurations beforehand. Then run:

    python DialatedCRF.py -v
    

    or you may specify dataset folder by -d:

    python DialatedCRF.py -v -d your/path/to/dataset/folder
    
  • Final results will be written to folder results. Metrics including Jaccard, F1-score, accuracy, etc., will be gathered as evaluation.txt in the folder results/evaluation


Contributed by Xi Mo,
License: Apache 2.0

Owner
DunnoCoding_Plus
CODE HARD, LIVE HAPPY.
DunnoCoding_Plus
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022