This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Overview

Semantic Segmentation on PyTorch

English | 简体中文

python-image pytorch-image lic-image

This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Installation

# semantic-segmentation-pytorch dependencies
pip install ninja tqdm

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision -c pytorch

# install PyTorch Segmentation
git clone https://github.com/Tramac/awesome-semantic-segmentation-pytorch.git

Usage

Train


  • Single GPU training
# for example, train fcn32_vgg16_pascal_voc:
python train.py --model fcn32s --backbone vgg16 --dataset pascal_voc --lr 0.0001 --epochs 50
  • Multi-GPU training
# for example, train fcn32_vgg16_pascal_voc with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --model fcn32s --backbone vgg16 --dataset pascal_voc --lr 0.0001 --epochs 50

Evaluation


  • Single GPU evaluating
# for example, evaluate fcn32_vgg16_pascal_voc
python eval.py --model fcn32s --backbone vgg16 --dataset pascal_voc
  • Multi-GPU evaluating
# for example, evaluate fcn32_vgg16_pascal_voc with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS eval.py --model fcn32s --backbone vgg16 --dataset pascal_voc

Demo

cd ./scripts
#for new users:
python demo.py --model fcn32s_vgg16_voc --input-pic ../tests/test_img.jpg
#you should add 'test.jpg' by yourself
python demo.py --model fcn32s_vgg16_voc --input-pic ../datasets/test.jpg
.{SEG_ROOT}
├── scripts
│   ├── demo.py
│   ├── eval.py
│   └── train.py

Support

Model

DETAILS for model & backbone.

.{SEG_ROOT}
├── core
│   ├── models
│   │   ├── bisenet.py
│   │   ├── danet.py
│   │   ├── deeplabv3.py
│   │   ├── deeplabv3+.py
│   │   ├── denseaspp.py
│   │   ├── dunet.py
│   │   ├── encnet.py
│   │   ├── fcn.py
│   │   ├── pspnet.py
│   │   ├── icnet.py
│   │   ├── enet.py
│   │   ├── ocnet.py
│   │   ├── psanet.py
│   │   ├── cgnet.py
│   │   ├── espnet.py
│   │   ├── lednet.py
│   │   ├── dfanet.py
│   │   ├── ......

Dataset

You can run script to download dataset, such as:

cd ./core/data/downloader
python ade20k.py --download-dir ../datasets/ade
Dataset training set validation set testing set
VOC2012 1464 1449
VOCAug 11355 2857
ADK20K 20210 2000
Cityscapes 2975 500
COCO
SBU-shadow 4085 638
LIP(Look into Person) 30462 10000 10000
.{SEG_ROOT}
├── core
│   ├── data
│   │   ├── dataloader
│   │   │   ├── ade.py
│   │   │   ├── cityscapes.py
│   │   │   ├── mscoco.py
│   │   │   ├── pascal_aug.py
│   │   │   ├── pascal_voc.py
│   │   │   ├── sbu_shadow.py
│   │   └── downloader
│   │       ├── ade20k.py
│   │       ├── cityscapes.py
│   │       ├── mscoco.py
│   │       ├── pascal_voc.py
│   │       └── sbu_shadow.py

Result

  • PASCAL VOC 2012
Methods Backbone TrainSet EvalSet crops_size epochs JPU Mean IoU pixAcc
FCN32s vgg16 train val 480 60 47.50 85.39
FCN16s vgg16 train val 480 60 49.16 85.98
FCN8s vgg16 train val 480 60 48.87 85.02
FCN32s resnet50 train val 480 50 54.60 88.57
PSPNet resnet50 train val 480 60 63.44 89.78
DeepLabv3 resnet50 train val 480 60 60.15 88.36

Note: lr=1e-4, batch_size=4, epochs=80.

Overfitting Test

See TEST for details.

.{SEG_ROOT}
├── tests
│   └── test_model.py

To Do

  • add train script
  • remove syncbn
  • train & evaluate
  • test distributed training
  • fix syncbn (Why SyncBN?)
  • add distributed (How DIST?)

References

Owner
Data&Model&Loss
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023