A check for whether the dependency jobs are all green.

Overview

alls-green

A check for whether the dependency jobs are all green.

Why?

Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do you use branch protection? Are you annoyed that you have to manually update the required checks in the repository settings hoping that you don't forget something on each improvement of the test matrix structure?

Yeah.. me too! But there's a solution — you can make a single check job listing all of the other jobs in its needs list. How about that? 🤯 Now you can add only that single job to your branch protection settings and you won't have to maintain that list manually anymore.

Right..? Wrong 🙁 — apparently, in case when something fails, the check job's result is set to skipped and not failed as one would expect. This is problematic and requires extra work to get it right. Some of it is iteration over the needed jobs and checking that all their results are set to success but it's no fun to maintain this sort of thing in many different repositories. Also, it is mandatory to make the check job run always, not only when all of the needed jobs succeed.

This is why I decided to make this action to simplify the maintenance.

--@webknjaz

:wq

Usage

To use the action add a check job to your workflow file (e.g. .github/workflows/ci-cd.yml) following the example below:

---
on:
  pull_request:
  push:

jobs:
  build:
    ...

  docs:
    ...

  linters:
    ...

  package-linters:
    needs:
    - build
    ...

  tests:
    needs:
    - build
    ...

  check:
    if: always()

    needs:
    - docs
    - linters
    - package-linters
    - tests

    runs-on: Ubuntu-latest

    steps:
    - name: Decide whether the needed jobs succeeded or failed
      uses: re-actors/[email protected]/v1
      with:
        allowed-failures: docs, linters
        allowed-skips: non-voting-flaky-job
        jobs: ${{ toJSON(needs) }}
...

Options

There are three options — allowed-failures, allowed-skips and jobs. The first two are optional but jobs is mandatory. allowed-failures tells the action which jobs should not affect the outcome if they don't succeed, by default all the jobs will be "voting". Same goes for allowed-skips — it won't allow the listed jobs to affect the outcome if they are skipped but are still "voting" in case they run. jobs is an object representing the jobs that should affect the decision of whether the pipeline failed or not, it is important to pass a JSON-serialized needs context to this argument.

Important: For this to work properly, it is a must to have the job always run, otherwise GitHub will make it skipped when any of the dependencies fail. In some contexts, skipped is interpreted as success which may lead to undersired, unobvious and even dangerous (as in security breach "dangerous") side-effects.

Whose idea is this?

My inspiration came from Zuul — a project gating system that practices having one "check-gate" that depends on multiple individual checks. Later when I started implementing this practice across the projects that I maintain, I discovered that I was not the only one who got the same idea @graingert posted a similar solution on the GitHub Community Forum. At some point I noticed that GitHub's auto-merge merges Dependabot PRs that are broken despite having branch protection enabled in the aiohttp repository, it wasn't obvious why. I stumbled on the solution accidentally, it was implemented in the PyCA/cryptography repository — the credit for that goes to @reaperhulk. He listed all of the needed jobs manually in the check. With those findings I've spent some time on experimentation and composing a more generic solution — this is how this GitHub Action came to be.

License

The contents of this project is released under the BSD 3-clause license.

Comments
  • Cancelled jobs result in a failure being reported

    Cancelled jobs result in a failure being reported

    https://github.com/pypa/pip/actions/runs/3210435710

    This triggers a notification if the jobs were auto-cancelled, for example due to concurrency protections.

    question wontfix 
    opened by pradyunsg 8
  • [TODO] Implement `allow-skips`

    [TODO] Implement `allow-skips`

    This has been suggested by @pradyunsg.

    Use-case: workflows that run jobs conditionally, depending on the files changed in associated PRs, for example — https://github.com/pypa/pip/blob/bbc7021/.github/workflows/ci.yml#L29-L49, using a change detection action like dorny/paths-filter.

    enhancement good first issue 
    opened by webknjaz 5
  • Deprecation warnings due to set-output

    Deprecation warnings due to set-output

    GitHub has deprecated the set-output way, so I'm getting warnings in my workflows from alls-green.

    Since they provided zero guidance how to fix it, I've written it down myself: https://hynek.me/til/set-output-deprecation-github-actions/

    tldr: echo "::set-output name=KEY::VALUE"echo "KEY=VALUE" >>$GITHUB_OUTPUT

    enhancement 
    opened by hynek 4
  • matrix job use case not covered or exemplified

    matrix job use case not covered or exemplified

    Apparently the current implementation does not count for matrix usage, thus not allowing you to ignore failure of one of matrix jobs.

    Sadly GHA unfortunate naming makes it harder to even refer to individual job run as from the human point of view each entry inside checks is a job. But from GHA workflow definition that is not exactly the same thing as matrix job-definitions get expanded into multiple job-runs with potential different names.

    How can we mark one particular matrix dimension as allowed to fail while still ensuring the the summarizing final "check" job does not fail?

    Most projects will avoid using different definitions for each job-run and use matrix for them, as that prevents repeating a huge number of tasks. Thus we do need a practical solution for allowing one matrix-entry to fail.

    documentation good first issue question 
    opened by ssbarnea 3
  • SyntaxError in normalize_needed_jobs_status.py

    SyntaxError in normalize_needed_jobs_status.py

    Hi This is how I added your action to my workflow:

    check:
        if: always()
        runs-on: [self-hosted]
        needs:
        - dev_build_int_tests
    
        steps:
        - name: Decide whether the needed jobs succeeded or failed
          uses: re-actors/a[email protected]
          with:
            jobs: ${{ toJSON(needs) }}
    

    And I got this error:

    Traceback (most recent call last):
     File "/usr/lib/python2.7/runpy.py", line 163, in _run_module_as_main
       mod_name, _Error)
     File "/usr/lib/python2.7/runpy.py", line 119, in _get_module_details
       code = loader.get_code(mod_name)
     File "/usr/lib/python2.7/pkgutil.py", line 281, in get_code
       self.code = compile(source, self.filename, 'exec')
     File "/opt/actions-runner/_work/_actions/re-actors/alls-green/v1.2.2/src/normalize_needed_jobs_status.py", line 29
       write_lines_to_streams((f'{name}={value}',), (outputs_file,))
                                               ^
    SyntaxError: invalid syntax
    Error: Process completed with exit code 1.
    

    Could you help me to fix it, please.

    opened by BuddyGlas 2
  • Include

    Include "Cancelled" in Skipped Statuses

    Jobs can be cancelled externally, either manually or automatically with an action. Cancelled jobs fall into the "failure" state of this action, and since they are not explicit failures they should be considered as "skipped" in the same way that jobs which are automatically skipped are.

    opened by tubbo 2
  • The execution status still green

    The execution status still green

    Sorry, maybe I don't understand how this action should work, but I added the check to my workflow, but I didn't get the expected result. Why is the execution status (number 1 in the screenshot) still green?

      check:
        if: always()
        runs-on: [self-hosted]
        needs:
        - dev_build_int_tests
    
        steps:
        - name: Install python3
          uses: actions/[email protected]
          with:
            python-version: '3.10'
    
        - name: Decide whether the needed jobs succeeded or failed
          uses: re-actors/a[email protected]
          with:
            jobs: ${{ toJSON(needs) }}
    

    2022-11-29_14-57

    opened by BuddyGlas 1
  • Requiring all jobs pass? (with a wildcard or some equivalent)

    Requiring all jobs pass? (with a wildcard or some equivalent)

    First of all, love the idea of this action, thanks for maintaining it.

    I was thinking about adopting this for https://github.com/di/pip-api/blob/master/.github/workflows/test.yml which has a somewhat complex (and long) matrix workflow. But based on the example in the readme and discussion in #5, it looks like I need to explicitly list all the jobs by name with needs:, and since the list of jobs is autogenerated, very long and changes frequently, I don't want to do this. Is there any workaround?

    Thanks!

    question 
    opened by di 0
Releases(v1.2.2)
  • v1.2.2(Oct 14, 2022)

    What's Changed

    Only the internals of the action have been updated to produce job step outputs through environment files^1. No UX changes were made. Additionally, the README has been improved to show how to allow individual matrix-defined jobs to fail and the outputs the action produces have been documented.

    Full Diff: https://github.com/re-actors/alls-green/compare/v1.2.1...v1.2.2

    Source code(tar.gz)
    Source code(zip)
  • v1.2.1(Sep 29, 2022)

    Bugfixes

    This release started processing trailing commas causing empty elements in allowed-failures and allowed-skips`.

    Full Diff: https://github.com/re-actors/alls-green/compare/v1.2.0...v1.2.1

    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Sep 24, 2022)

    What's New

    This release implements posting check details as a summary on the workflow overview page.

    Full Diff: https://github.com/re-actors/alls-green/compare/v1.1.0...v1.2.0

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Dec 14, 2021)

  • v1.0.2(Dec 14, 2021)

    This is a patch release that includes bits of refactoring of the inline Python code block into its own module file and clarifications in the input descriptions.

    Source code(tar.gz)
    Source code(zip)
Owner
Re:actors
It's a home for GitHub Actions created by @webknjaz which react to the repository events. Research purposes, currently.
Re:actors
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022