A rule-based log analyzer & filter

Overview

Flog

一个根据规则集来处理文本日志的工具。

前言

在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。

日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。

以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决定写这个工具,根据规则自动分析日志、剔除垃圾信息。

使用方法

安装

python setup.py install

基础用法

flog -r rules.yaml /path/to/1.log /path/to/2.log /path/to/3.log -o /path/to/filtered.log

其中:

  • rules.yaml是规则文件
  • /path/to/x.log是原始的日志文件,支持一次输入多个日志文件。
  • /path/to/filtered.log是过滤后的日志文件,如果不指定文件名(直接一个-o),会自动生成一个。

如果不需要过滤日志内容,只需显示分析结果,可以直接:

flog -r rules.yaml /path/to/your.log

规则语法

基础

name: Rule Name #规则集名称
patterns: #规则列表
  # 单行模式,如果匹配到 ^Hello,就输出 Match Hello
  - match: "^Hello"
    message: "Match Hello"
    action: bypass #保留此条日志(会输出到-o指定的文件中)
    
  # 多行模式,以^Hello开头,以^End结束,输出 Match Hello to End,并丢弃此条日志
  - start: "^Hello"
    end: "^End"
    message: "Match Hello to End"
    action: drop

  - start: "Start"
    start_message: "Match Start" #匹配开始时显示的信息
    end: "End"
    end_messagee: "Match End" #结束时显示的信息

纯过滤模式

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
  - start: "^Hello" #多行模式,删除从Hello到End中间的所有内容
    end: "^End"

过滤日志内容,并输出信息

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
    message: "Match Hello"
    action: drop #删除此行日志

规则嵌套

仅多行模式支持规则嵌套。

name: Rule
patterns:
  - start: "^Response.*{$"
    end: "^}"
    patterns:
      - match: "username = (.*)"
        message: "Current user: {{ capture[0] }}"

输入:

Login Response {
  username = zorro
  userid = 123456
}

输出:

Current user: zorro

action

action字段主要用于控制是否过滤此条日志,仅在指定 -o 参数后生效。 取值范围:【dropbypass】。

为了简化纯过滤类型规则的书写,action默认值的规则如下:

  • 如果规则中包含messagestart_messageend_message字段,action默认为bypass,即输出到文件中。
  • 如果规则中不包含message相关字段,action默认为drop,变成一条纯过滤规则。

message

message 字段用于在标准输出显示信息,并且支持 Jinja 模版语法来自定义输出信息内容,通过它可以实现一些简单的日志分析功能。

目前支持的参数有:

  • lines: (多行模式下)匹配到的所有行
  • content: 匹配到的日志内容
  • captures: 正则表达式(match/start/end)捕获的内容

例如:

name: Rule Name
patterns:
  - match: "^Hello (.*)"
    message: "Match {{captures[0]}}"

如果遇到:"Hello lilei",则会在终端输出"Match lilei"

context

可以把日志中频繁出现的正则提炼出来,放到context字段下,避免复制粘贴多次,例如:

name: Rule Name

context:
  timestamp: "\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3}"
patterns:
  - match: "hello ([^:]*):"
    message: "{{ timestamp }} - {{ captures[0] }}"

输入:2022-04-08 16:52:37.152 hello world: this is a test message
输出:2022-04-08 16:52:37.152 - world

高亮

内置了一些 Jinjafilter,可以在终端高亮输出结果,目前包含:

black, red, green, yellow, blue, purple, cyan, white, bold, light, italic, underline, blink, reverse, strike

例如:

patterns:
  - match: "Error: (.*)"
    message: "{{ captures[0] | red }}"

输入:Error: file not found
输出:file not found

include

支持引入其它规则文件,例如:

name: Rule
include: base #引入同级目录下的 base.yaml 或 base.yml

include支持引入一个或多个文件,例如:

name: Rule
include:
  - base
  - ../base
  - base.yaml
  - base/base1
  - base/base2.yaml
  - ../base.yaml
  - /usr/etc/rules/base.yml

contextpatterns会按照引用顺序依次合并,如果有同名的context,后面的会替换之前的。

License

MIT

Owner
上山打老虎
专业造工具
上山打老虎
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022