This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

Overview

HiRID-ICU-Benchmark

This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

We first introduce key resources to better understand the structure and specificity of the data. We then detail the different features of our pipeline and how to use them as shown in the below figure.

Figure

Key Resources

We build our work on previously released data, models, and metrics. To help users which might be unfamiliar with them we provide in this section some related documentation.

HiRID data

We based our benchmark on a recent dataset in intensive care called HiRID. It is a freely accessible critical care dataset containing data from more than 33,000 patient admissions to the Department of Intensive Care Medicine, Bern University Hospital, Switzerland (ICU) from January 2008 to June 2016. It was first released as part of the circulatory Early Warning Score project.

First, you can find some more details about the demographics of the patients of the data in Appendix A: HiRID Dataset Details. However, for more details about the original data, it's better to refer to its latest documentation . More in detail the documentation contains the following sections of interest:

  • Getting started This first section points to a jupyter notebook to familiarize yourself with the data.
  • Data details This second section contains a description of the variables existing in the dataset. To complete this section you can refer to our varref.tsv which we use to build the common version of the data.
  • Structure of the published data This final section contains details about the structure of the raw data you will have to download and place in hirid-data-root folder (see "Run Pre-Processing").

Models

As for the data, in this benchmark, we compare existing machine learning models that are commonly used for multivariate time-series data. For these models' implementation we use pytorch, for the deep learning models, lightgbm for the boosted tree approaches, and sklearn for the logistic regression model and metrics. In the deep learning models we used the following models:

Metrics

In our benchmark we use different metrics depending on the tasks, however, all the implementations are from sklearn which documents well their usage:

Setup

In the following we assume a Linux installation, however, other platforms may also work

  1. Install Conda, see the official installation instructions
  2. clone this repository and change into the directory of the repository
  3. conda env update (creates an environment icu-benchmark)
  4. pip install -e .

Download Data

  1. Get access to the HiRID 1.1.1 dataset on physionet. This entails
    1. getting a credentialed physionet account
    2. submit a usage request to the data depositor
  2. Once access is granted, download the following files
    1. reference_data.tar.gz
    2. observation_tables_parquet.tar.gz
    3. pharma_records_parquet.tar.gz
  3. unpack the files into the same directory using e.g. cat *.tar.gz | tar zxvf - -i

How to Run

Run Prepocessing

Activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks preprocess --hirid-data-root [path to unpacked parquet files as downloaded from phyiosnet] \
                          --work-dir [output directory] \
                          --var-ref-path ./preprocessing/resources/varref.tsv \
                          --split-path ./preprocessing/resources/split.tsv \
                          --nr-workers 8

The above command requires about 6GB of RAM per core and in total approximately 30GB of disk space.

Run Training

Custom training

To run a custom training you should, activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks train -c [path to gin config] \
                     -l [path to logdir] \
                     -t [task name] \
                     -sd [seed number] 

Task name should be one of the following: Mortality_At24Hours, Dynamic_CircFailure_12Hours, Dynamic_RespFailure_12Hours, Dynamic_UrineOutput_2Hours_Reg, Phenotyping_APACHEGroup or Remaining_LOS_Reg.\ To see an example of gin-config file please refer to ./configs/. You can also check directly the gin-config documentation. this will create a new directory [path to logdir]/[task name]/[seed number]/ containing:

  • val_metrics.pkl and test_metrics.pkl: Pickle files with model's performance respectively validation and test sets.
  • train_config.gin: The so-called "operative" config allowing the save the configuration used at training.
  • model.(torch/txt/joblib) : The weights of the model that was trained. The extension depends model type.
  • tensorboard/: (Optional) Directory with tensorboard logs. One can do tensorboard --logdir ./tensorboard to visualize them,

Reproduce experiments from the paper

If you are interested in reproducing the experiments from the paper, you can directly use the pre-built scripts in ./run_scripts/. For instance, you can run the following command to reproduce the GRU baseline on the Mortality task:

sh run_script/baselines/Mortality_At24Hours/GRU.sh

As for custom training, you will create a directory with the files mentioned above. The pre-built scripts are divided into four categories as follows:

  • baselines: This folder contains scripts to reproduce the main benchmark experiment. Each of them will run a model with the best parameters we found using a random search for 10 identical seeds.
  • ablations: This folder contains the scripts to reproduce the ablations studies on the horizon, sequence length, and weighting.
  • random-search: This script will run each one instance of a random search. This means if you want a k-run search you need to run it k times.
  • pretrained: This last type of script allows us to evaluate pretrain models from our experiments. We discuss them more in detail in the next section

Run Evaluation of Pretrained Models

Custom Evaluation

As for training a model, you can evaluate any previously trained model using the evaluate as follows:

icu-benchmarks evaluate -c [path to gin config] \
                        -l [path to logdir] \
                        -t [task name] \

This command will evaluate the model at [path to logdir]/[task name]/model.(torch/txt/joblib) on the test set of the dataset provided in the config. Results are saved to test_metrics.pkl file.

Evaluate Manuscript models

To either check the pre-processing pipeline outcome or simply reproduce the paper results we provided weights for all models of the benchmark experiment in files/pretrained_weights. Please note that the data items in this repository utilize the git-lfs framework. You need to install git-lfs on your system to be able to download and access the pretrained weights.

Once this is done you can evaluate any network by running :

sh ./run_scripts/pretrained/[task name]/[model name].sh

Note that we provide only one set of weights for each model which corresponds to the median performance among the 10 runs reported in the manuscript.

Run Pipeline on Simulated Data

We provide a small toy data set to test the processing pipeline and to get a rough impression how to original data looks like. Since there are restrictions accessing the HiRID data set, instead of publishing a small subset of the data, we generated a very simple simulated dataset based on some statistics aggregated from the full HiRID dataset. It is however not useful for data exploration or training, as for example the values are sampled independently from each other and any structure between variables in the original data set is not represented.

The example data set is provided in files/fake_data. Similar as with the original data, the preprocessing pipeline can be run using

icu-benchmarks preprocess --hirid-data-root files/fake_data --work-dir fake_data_wdir --var-ref-path preprocessing/resources/varref.tsv

Note, that for this fake dataset some models cannot be successfully trained, as the training instances are degenerate. In case you'd like to explore the training part of our pipeline, you could work with pretrained models as described above.

Dataset Generation

The data set was generated using the following command:

python -m icu_benchmarks.synthetic_data.generate_simple_fake_data files/dataset_stats/ files/fake_data/ --var-ref-path preprocessing/resources/varref.tsv

The script generate_simple_fake_data.py generates fake observation and pharma records in the following way: It first generates a series of timestamps where the difference between consecutive timestamps is sampled from the distribution of timestamp differences in the original dataset. Then, for every timestamp, a variableid/pharmaid is selected at random also according to the distribution in the original dataset. Finally, we sample the values of a variable from a gaussian with mean and standard deviation as observed in the original data. We then clip the values to fit the lower and upperbound as given in the varref table.

The necessary statistics for sampling can be found in files/dataset_stats. They were generated using

python -m icu_benchmarks.synthetic_data.collect_stats [Path to the decompressed parquet data directory as published on physionet] files/dataset_stats/

License

You can find the license for the original HiRID data here. For our code we license it under a MIT License

Owner
Biomedical Informatics at ETH Zurich
Biomedical Informatics at ETH Zurich
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023