project page for VinVL

Related tags

Deep LearningVinVL
Overview

VinVL: Revisiting Visual Representations in Vision-Language Models

Updates

02/28/2021: Project page built.

Introduction

This repository is the project page for VinVL, containing necessary instructions to reproduce the results presented in the paper. We presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used bottom-up and top-down model (code), the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model OSCAR (code), and utilize an improved approach to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks.

Performance

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
Metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
SoTA_S 39.2 68.0 56.6 84.5 38.9 29.2 129.8 22.4 61.5 9.2 70.92 58.80 63.17
SoTA_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.67 79.30 61.62
SoTA_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 - - 74.93 81.47 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
VinVL_B 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 76.12 83.08 64.65
VinVL_L 58.8 83.5 75.4 92.9 41.0 31.1 140.9 25.2 - - 76.62 83.98 -
gain 1.3 0.7 1.9 0.6 -0.7 0.5 0.9 0.7 5.9 0.7 1.69 2.51 1.48

t2i: text-to-image retrieval; i2t: image-to-text retrieval; IC: image captioning on COCO.

Leaderboard results

VinVL has achieved top-position in several VL leaderboards, including Visual Question Answering (VQA), Microsoft COOC Image Captioning, Novel Object Captioning (nocaps), and Visual Commonsense Reasoning (VCR).

Comparison with image features from bottom-up and top-down model (code).

We observe uniform improvements on seven VL tasks by replacing visual features from bottom-up and top-down model with ours. The NoCaps baseline is from VIVO, and our results are obtained by directly replacing the visual features. The baselines for rest tasks are from OSCAR, and our results are obtained by replacing the visual features and performing OSCAR+ pre-training. All models are BERT-Base size. As analyzed in Section 5.2 in the VinVL paper, the new visual features contributes 95% of the improvement.

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
bottom-up and top-down model 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.16 78.07 61.62
VinVL (ours) 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 75.95 83.08 64.65
gain 4.1 2.4 4.6 1.5 0.4 1.2 3.0 2.3 5.9 0.7 2.79 4.71 3.03

Please see the following two figures for visual comparison.

Source code

Pretrained Faster-RCNN model and feature extraction

The pretrained X152-C4 object-attribute detection can be downloaded here. With code from our Scene Graph Benchmark Repo (to be released soon), one can extract features with following command:

python tools/test_sg_net.py --config-file sgg_configs/vgattr/vinvl_x152c4.yaml TEST.IMS_PER_BATCH 2 MODEL.WEIGHT models/vinvl/vinvl_vg_x152c4.pth MODEL.ROI_HEADS.NMS_FILTER 1 MODEL.ROI_HEADS.SCORE_THRESH 0.2 DATA_DIR "../maskrcnn-benchmark-1/datasets1" TEST.IGNORE_BOX_REGRESSION True MODEL.ATTRIBUTE_ON True TEST.OUTPUT_FEATURE True

The output feature will be encoded as base64.

Find more pretrained models in DOWNLOAD.

Pre-exacted Image Features

For ease-of-use, we make pretrained features and predictions available for all pretraining datasets and downstream tasks. Please find the instructions to download them in DOWNLOAD.

Pretraind Oscar+ models and VL downstream tasks

The code to produce all vision-language results (both pretraining and downstream task finetuning) can be found in our OSCAR repo. One can find the model zoo for vision-language tasks here.

Citations

Please consider citing this paper if you use the code:

@article{li2020oscar,
  title={Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks},
  author={Li, Xiujun and Yin, Xi and Li, Chunyuan and Hu, Xiaowei and Zhang, Pengchuan and Zhang, Lei and Wang, Lijuan and Hu, Houdong and Dong, Li and Wei, Furu and Choi, Yejin and Gao, Jianfeng},
  journal={ECCV 2020},
  year={2020}
}

@article{zhang2021vinvl,
  title={VinVL: Making Visual Representations Matter in Vision-Language Models},
  author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
  journal={CVPR 2021},
  year={2021}
}
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022