python-timbl, originally developed by Sander Canisius, is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.

Overview
http://applejack.science.ru.nl/lamabadge.php/python-timbl Project Status: Active – The project has reached a stable, usable state and is being actively developed.

README: python-timbl

Authors: Sander Canisius, Maarten van Gompel
Contact: [email protected]
Web site: https://github.com/proycon/python-timbl/

python-timbl is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.

This is the 2013 release by Maarten van Gompel, building on the 2006 release by Sander Canisius. For those used to the old library, there is one backwards-incompatible change, adapt your scripts to use import timblapi instead of import timbl, as the latter is now a higher-level interface.

Since 2020, this only supports Python 3, Python 2 support has been deprecated.

License

python-timbl is free software, distributed under the terms of the GNU General Public License. Please cite TiMBL in publication of research that uses TiMBL.

Installation

python-timbl is distributed as part of LaMachine (https://proycon.github.io/LaMachine), which significantly simplifies compilation and installation. The remainder of the instructions in this section refer to manual compilation and installation.

python-timbl depends on two external packages, which must have been built and/or installed on your system in order to successfully build python-timbl. The first is TiMBL itself; download its tarball from TiMBL's homepage and follow the installation instructions, recent Ubuntu/Debian users will find timbl in their distribution's package repository. In the remainder of this section, it is assumed that $TIMBL_HEADERS points to the directory that contains timbl/TimblAPI.h, and $TIMBL_LIBS the directory that has contains the Timbl libraries. Note that Timbl itself depends on additional dependencies.

The second prerequisite is Boost.Python, a library that facilitates writing Python extension modules in C++. Many Linux distributions come with prebuilt packages of Boost.Python. If so, install this package; on Ubuntu/Debian this can be done as follows:

$ sudo apt-get install libboost-python libboost-python-dev

If not, refer to the Boost installation instructions to build and install Boost.Python manually. In the remainder of this section, let $BOOST_HEADERS refer to the directory that contains the Boost header files, and $BOOST_LIBS to the directory that contains the Boost library files. If you installed Boost.Python with your distribution's package manager, these directories are probably /usr/include and /usr/lib respectively.

If both prerequisites have been installed on your system, python-timbl can be obtained through github:

$ git clone git://github.com/proycon/python-timbl.git
$ cd python-timbl

and can then be built and installed with the following command:

$ sudo python3 setup.py \
       build_ext --boost-include-dir=$BOOST_HEADERS \
                 --boost-library-dir=$BOOST_LIBS \
                 --timbl-include-dir=$TIMBL_HEADERS  \
                 --timbl-library-dir=$TIMBL_LIBS \
       install --prefix=/dir/to/install/in

This is the verbose variant, if default locations are used then the following may suffice already:

$ sudo python setup3.py install

The --prefix option to the install command denotes the directory in which the module is to be installed. If you have the appropriate system permissions, you can leave out this option. The module will then be installed in the Python system tree. Otherwise, make sure that the installation directory is in the module search path of your Python system.

Usage

python-timbl offers two interface to the timbl API. A low-level interface contained in the module timblapi, which is very much like the C++ library, and a high-level object oriented interface in the timbl module, which offers a TimblClassifier class.

timbl.TimblClassifier: High-level interface

The high-level interface features as TimblClassifier class which can be used for training and testing classifiers. An example is provided in example.py, parts of it will be discussed here.

After importing the necessary module, the classifier is instantiated by passing it an identifier which will be used as prefix used for all filenames written, and a string containing options just as you would pass them to Timbl:

import timbl
classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )

Normalization of theclass distribution is enabled by default (regardless of the -G option to Timbl), pass normalize=False to disable it.

Training instances can be added using the append(featurevector, classlabel) method:

classifier.append( (1,0,0), 'financial')
classifier.append( (0,1,0), 'furniture')
classifier.append( (0,0,1), 'geographic')

Subsequently, you invoke the actual training, note that at each step Timbl may output considerable details about what it is doing to standard error output:

classifier.train()

The results of this training is an instance base file, which you can save to file so you can load it again later:

classifier.save()

classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )
classifier.load()

The main advantage of the Python library is the fact that you can classify instances on the fly as follows, just pass a feature vector and optionally also a class label to classify(featurevector, classlabel):

classlabel, distribution, distance = classifier.classify( (1,0,0) )

You can also create a test file and test it all at once:

classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )
classifier.load()
classifier.addinstance("testfile", (1,0,0),'financial' ) #addinstance can be used to add instances to external files (use append() for training)
classifier.addinstance("testfile", (0,1,0),'furniture' )
classifier.addinstance("testfile", (0,0,1),'geograpic' )
classifier.addinstance("testfile", (1,1,0),'geograpic' ) #this one will be wrongly classified as financial & furniture
classifier.test("testfile")

print "Accuracy: ", classifier.getAccuracy()

Real multithreading support

If you are writing a multithreaded Python application (i.e. using the threading module) and want to benefit from actual concurrency, side-stepping Python's Global Interpreter Lock, add the parameter threading=True when invoking the TimblClassifier constructor. Take care to instantiate TimblClassifier before threading. You can then call TimblClassifier.classify() from within your threads. Concurrency only exists for this classify method.

If you do not set this option, everything will still work fine, but you won't benefit from actual concurrency due to Python's the Global Interpret Lock.

timblapi: Low-level interface

For documentation on the low level timblapi interface you can consult the TiMBL API guide. Although this document actually describes the C++ interface to TiMBL, the latter is similar enough to its Python binding for this document to be a useful reference for python-timbl as well. For most part, the Python TiMBL interface follows the C++ version closely. The differences are listed below.

Naming style

In the C++ interface, method names are in UpperCamelCase; for example, Classify, SetOptions, etc. In contrast, the Python interface uses lowerCamelCase: classify, setOptions, etc. Method overloading TiMBL's Classify methods use the C++ method overloading feature to provide three different kinds of outputs. Method overloading is non-existant in Python though; therefore, python-timbl has three differently named methods to mirror the functionality of the overloaded Classify method. The mapping is as follows:

    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result);
    #
    def TimblAPI.classify(line) -> bool, result

    #
    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result,
    #                         double& distance);
    #
    def TimblAPI.classify2(line) -> bool, string, distance

    #
    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result,
    #                         std::string& Distrib,
    #                         double& distance);
    #
    def TimblAPI.classify3(line, bool normalize=true,int requireddepth=0) -> bool, string, dictionary, distance

#Thread-safe version of the above, releases and reacquires Python's Global Interprer Lock
    def TimblAPI.classify3safe(line, normalize, requireddepth=0) -> bool, string, dictionary, distance

Note that the classify3 function returned a string representation of the distribution in versions of python-timbl prior to 2015.08.12, now it returns an actual dictionary. When using classify3safe (the thread-safe version) , ensure you first call initthreads after instantiating timblapi, and manually call the initthreading() method.

Python-only methods

Three TiMBL API methods print information to a standard C++ output stream object (ShowBestNeighbors, ShowOptions, ShowSettings, ShowSettings). In the Python interface, these methods will only work with Python (stream) objects that have a fileno method returning a valid file descriptor. Alternatively, three new methods are provided (bestNeighbo(u)rs, options, settings); these methods return the same information as a Python string object.

scikit-learn wrapper

A wrapper for use in scikit-learn has been added. It was designed for use in scikit-learn Pipeline objects. The wrapper is not finished and has to date only been tested on sparse data. Note that TiMBL does not work well with large amounts of features. It is suggested to reduce the amount of features to a number below 100 to keep system performance reasonable. Use on servers with large amounts of memory and processing cores advised.

You might also like...
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Create UIs for prototyping your machine learning model in 3 minutes
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Comments
  • classify() method does not return correct distribution

    classify() method does not return correct distribution

    I'm using the LaMachine virtual environment on Ponyland

    classifier = timbl.TimblClassifier("pl_type.master", "-mO:I1 -k 5 -G 0")

    Should return probability distribution that adds up to 1, but ...

    classifier.classify(("administrateur", "n", "i", "=", "str", "a", "=", "t", "|", "r", "-", "-", "+", "r"))

    returns:

    {'EN': 1, 'S': 1}

    But the same classifier returns the correct distribution if the test() method is used instead:

    { EN 0.0526316, S 0.947368 }

    bug question ready 
    opened by timjzee 10
  • Compatibility with latest timbl broken!

    Compatibility with latest timbl broken!

    
    gcc -pthread -Wno-unused-result -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -g -fstack-protector --param=ssp-buffer-size=4 -Wformat -Werror=format-security -fPIC -I/usr/include -I/home/travis/virtualenv/python3.4.6/include -I/usr/include/libxml2 -I/opt/python/3.4.6/include/python3.4m -c src/timblapi.cc -o build/temp.linux-x86_64-3.4/src/timblapi.o
    
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ [enabled by default]
    
    In file included from /usr/include/c++/4.8/unordered_map:35:0,
    
                     from /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:35,
    
                     from /home/travis/virtualenv/python3.4.6/include/timbl/TimblAPI.h:38,
    
                     from src/timblapi.h:51,
    
                     from src/timblapi.cc:47:
    
    /usr/include/c++/4.8/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support is currently experimental, and must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
    
     #error This file requires compiler and library support for the \
    
      ^
    
    In file included from /home/travis/virtualenv/python3.4.6/include/timbl/TimblAPI.h:38:0,
    
                     from src/timblapi.h:51,
    
                     from src/timblapi.cc:47:
    
    /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:211:11: error: ‘unordered_map’ in namespace ‘std’ does not name a type
    
       typedef std::unordered_map< size_t, ValueClass *> IVCmaptype;
    
               ^
    
    /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:221:5: error: ‘IVCmaptype’ does not name a type
    
         IVCmaptype ValuesMap;
    
         ^
    
    error: command 'gcc' failed with exit status 1
    
    bug PRIORITY 
    opened by proycon 1
Releases(v2020.06.08)
Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022