Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

Overview

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set)


Description

The PyOpenVINO is a spin-off product from my deep learning algorithm study work. This project is aiming at neither practical performance nor rich functionalities. PyOpenVINO can load an OpenVINO IR model (.xml/.bin) and run it. The implementation is quite straightforward and naive. No Optimization technique is used. Thus, the code is easy to read and modify. Supported API is quite limited, but it mimics OpenVINO IE Python API. So, you can easily read and modify the sample code too.

  • Developed as a spin-off from my deep learning study work.
  • Very slow and limited functionality. Not a general DL inference engine.
  • Naive and straightforward code: (I hope) This is a good reference for learning deep-learning technology.
  • Extensible ops: Ops are implemented as plugins. You can easily add your ops as needed.

How to run

Steps 1 and 2 are optional since the converted MNIST IR model is provided.

  1. (Optional) Train a model and generate a 'saved_model' with TensorFlow
python mnist-tf-training.py

The trained model data will be created under ./mnist-savedmodel directory.

  1. (Optional) Convert TF saved_model into OpenVINO IR model
    Prerequisite: You need to have OpenVINO installed (Model Optimizer is required).
convert-model.bat

Converted IR model (.xml/.bin) will be generated in ./models directory.

  1. Run pyOpenVINO sample program
python test_pyopenvino.py

You'll see the output like this.

pyopenvino>python test_pyopenvino.py
inputs: [{'name': 'conv2d_input', 'type': 'Parameter', 'version': 'opset1', 'data': {'element_type': 'f32', 'shape': (1, 1, 28, 28)}, 'output': {0: {'precision': 'FP32', 'dims': (1, 1, 28, 28)}}}]
outputs: [{'name': 'Func/StatefulPartitionedCall/output/_11:0', 'type': 'Result', 'version': 'opset1', 'input': {0: {'precision': 'FP32', 'dims': (1, 10)}}}]
# node_name, time (sec)
conv2d_input Parameter, 0.0
conv2d_input/scale_copy Const, 0.0
StatefulPartitionedCall/sequential/conv2d/Conv2D Convolution, 0.11315417289733887
StatefulPartitionedCall/sequential/conv2d/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d/Relu ReLU, 0.0010142326354980469
StatefulPartitionedCall/sequential/max_pooling2d/MaxPool MaxPool, 0.020931482315063477
StatefulPartitionedCall/sequential/conv2d_1/Conv2D/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Conv2D Convolution, 0.04333162307739258
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/max_pooling2d_1/MaxPool MaxPool, 0.006029367446899414
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D/ReadVariableOp Const, 0.0010688304901123047
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D Convolution, 0.004073381423950195
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose/value6071024 Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose Transpose, 0.0
StatefulPartitionedCall/sequential/flatten/Const Const, 0.0
StatefulPartitionedCall/sequential/flatten/Reshape Reshape, 0.0
StatefulPartitionedCall/sequential/dense/MatMul/ReadVariableOp Const, 0.0010004043579101562
StatefulPartitionedCall/sequential/dense/MatMul MatMul, 0.0013704299926757812
StatefulPartitionedCall/sequential/dense/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul MatMul, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense_1/Softmax SoftMax, 0.0009992122650146484
Func/StatefulPartitionedCall/output/_11:0 Result, 0.0
@TOTAL_TIME, 0.21120882034301758
0.21120882034301758 sec/inf
Raw result: {'Func/StatefulPartitionedCall/output/_11:0': array([[7.8985136e-07, 2.0382247e-08, 9.9999917e-01, 1.0367385e-10,
        1.0184062e-10, 1.6024957e-12, 2.0729640e-10, 1.6014919e-08,
        6.5354638e-10, 9.5946295e-14]], dtype=float32)}
Result: [2 0 1 7 8 6 3 4 5 9]
  1. Run Draw-and-Inter demo
python draw-and-infer.py

How to Operate

  • Left click to draw points.
  • Right click to clear the canvas.
    This demo program is using 'numpy' kernels for performance.
    draw-and-infer

A Littile Description of the Implementation

IR model internal representation

This inference engine uses networkx.DiGraph as the internal representation of the IR model. IR model will be translated into nodes and edges.
The nodes represent the ops, and it holds the attributes of the ops (e.g., strides, dilations, etc.).
The edges represent the connection between the nodes. The edges hold the port number for both ends.
The intermediate output from the nodes (feature maps) will be stored in the data attributes in the output port of the node (G.nodes[node_id_num]['output'][port_num]['data'] = feat_map)

An example of the contents (attributes) of a node

node id= 14
 name : StatefulPartitionedCall/sequential/target_conv_layer/Conv2D
 type : Convolution
 version : opset1
 data :
     auto_pad : valid
     dilations : 1, 1
     pads_begin : 0, 0
     pads_end : 0, 0
     strides : 1, 1
 input :
     0 :
         precision : FP32
         dims : (1, 64, 5, 5)
     1 :
         precision : FP32
         dims : (64, 64, 3, 3)
 output :
     2 :
         precision : FP32
         dims : (1, 64, 3, 3)

An example of the contents of an edge

format = (from-layer, from-port, to-layer, to-port)

edge_id= (0, 2)
   {'connection': (0, 0, 2, 0)}

Ops plugins

Operators are implemented as plugins. You can develop an Op in Python and place the file in the op_plugins directory. The inference_engine of pyOpenVINO will search the Python source files in the op_plugins directory at the start time and register them as the Ops plugin.
The file name of the Ops plugin will be treated as the Op name, so it must match the layer type attribute field in the IR XML file.
The inference engine will call the compute() function of the plugin to perform the calculation. The compute() function is the only API between the inference engine and the plugin. The inference engine will collect the required input data and pass it to the compute() function. The input data is in the form of Python dict. ({port_num:data[, port_num:data[, ...]]})
The op needs to calculate the result from the input data and return it as a Python dict. ({port_num:result[, port_num:result[, ...]]})

Kernel implementation: NumPy version and Naive version

Not all, but some Ops have dual kernel implementation, a naive implementation (easy to read), and a NumPy version implementation (a bit faster).
The NumPy version might be x10+ faster than the naive version.
The kernel type can be specified with Executable_Network.kernel_type attribute. You can specify eitgher one of 'naive' (default) or 'numpy'. Please refer to the sample program test_pyopenvino.py for the details.

END

Owner
Yasunori Shimura
Yasunori Shimura
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023