Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Overview

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Download links and PyTorch implementation of "Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision", ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Xiaoshi Wu, Hadar Averbuch-Elor, Jin Sun, Noah Snavely ICCV 2021

Project Page | Paper

drawing

The WikiScenes Dataset

  1. Image and Textual Descriptions: WikiScenes contains 63K images with captions of 99 cathedrals. We provide two versions for download:

    • Low-res version used in our experiments (maximum width set to 200[px], aspect ratio fixed): (1.9GB .zip file)
    • Higher-res version (maximum longer dimension set to 1200[px], aspect ratio fixed): (19.4GB .zip file)

    Licenses for the images are provided here: (LicenseInfo.json file)

    Data Structure

    WikiScenes is organized recursively, following the tree structure in Wikimedia. Each semantic category (e.g. cathedral) contains the following recursive structure:

    ----0 (e.g., "milano cathedral duomo milan milano italy italia")
    --------0 (e.g., "Exterior of the Duomo (Milan)")
    ----------------0 (e.g., "Duomo (Milan) in art - exterior")
    ----------------1
    ----------------...
    ----------------K0-0
    ----------------category.json
    ----------------pictures (contains all pictures in current hierarchy level)
    --------1
    --------...
    --------K0
    --------category.json
    --------pictures (contains all pictures in current hierarchy level)
    ----1
    ----2
    ----...
    ----N
    ----category.json
    

    category.json is a dictionary of the following format:

    {
        "max_index": SUB-DIR-NUMBER
        "pairs" :    {
                        CATEGORY-NAME: SUB-DIR-NAME
                    }
        "pictures" : {
                        PICTURE-NAME: {
                                            "caption": CAPTION-DATA,
                                            "url": URL-DATA,
                                            "properties": PROPERTIES
                                    }
                    }
    }
    

    where:

    1. SUB-DIR-NUMBER is the total number of subcategories
    2. CATEGORY-NAME is the name of the category (e.g., "milano cathedral duomo milan milano italy italia")
    3. SUB-DIR-NAME is the name of the sub-folder (e.g., "0")
    4. PICTURE-NAME is the name of the jpg file located within the pictures folder
    5. CAPTION-DATA contains the caption and URL contains the url from which the image was scraped.
    6. PROPERTIES is a list of properties pre-computed for the image-caption pair (e.g. estimated language of caption).
  2. Keypoint correspondences: We also provide keypoint correspondences between pixels of images from the same landmark: (982MB .zip file)

    Data Structure

     {
         "image_id" : {
                         "kp_id": (x, y),
                     }
     }
    

    where:

    1. image_id is the id of each image.
    2. kp_id is the id of keypoints, which is unique across the whole dataset.
    3. (x, y) the location of the keypoint in this image.
  3. COLMAP reconstructions: We provide the full 3D models used for computing keypoint correspondences: (1GB .zip file)

    To view these models, download and install COLMAP. The reconstructions are organized by landmarks. Each landmark folder contains all the reconstructions associated with that landmark. Each reconstruction contains 3 files:

    1. points3d.txt that contains one line of data for each 3D point associated with the reconstruction. The format for each point is: POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX).
    2. images.txt that contains two lines of data for each image associated with the reconstruction. The format of the first line is: IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME. The format of the second line is: POINTS2D[] as (X, Y, POINT3D_ID)
    3. cameras.txt that contains one line of data for each camera associated with the reconstruction according to the following format: CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]

    Please refer to COLMAP's tutorial for further instructions on how to view these reconstructions.

  4. Companion datasets for additional landmark categories: We provide download links for additional category types:

    Synagogues

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

    Mosques

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

Reproducing Results

  1. Minimum requirements. This project was originally developed with Python 3.6, PyTorch 1.0 and CUDA 9.0. The training requires at least one Titan X GPU (12Gb memory) .

  2. Setup your Python environment. Clone the repository and install the dependencies:

    conda create -n <environment_name> --file requirements.txt -c conda-forge/label/cf202003
    conda activate <environment_name>
    conda install scikit-learn=0.21
    pip install opencv-python
    
  3. Download the dataset. Download the data as detailed above, unzip and place as follows: Image and textual descriptions in <project>/data/ and the correspondence file in <project>.

  4. Download pre-trained models. Download the initial weights (pre-trained on ImageNet) for the backbone model and place in <project>/models/weights/.

    Backbone Initial Weights Comments
    ResNet50 resnet50-19c8e357.pth PyTorch official model
  5. Train on the WikiScenes dataset. See instructions below. Note that the first run always takes longer for pre-processing. Some computations are cached afterwards.

Training, Inference and Evaluation

The directory launch contains template bash scripts for training, inference and evaluation.

Training. For each run, you need to specify the names of two variables, bash EXP and bash RUN_ID. Running bash EXP=wiki RUN_ID=v01 ./launch/run_wikiscenes_resnet50.sh will create a directory ./logs/wikiscenes_corr/wiki/ with tensorboard events and saved snapshots in ./snapshots/wikiscenes_corr/wiki/v01.

Inference.

If you want to do inference with our pre-trained model, please make a directory and put the model there.

    mkdir -p ./snapshots/wikiscenes_corr/final/ours

Download our validation set, and unzip it.

    unzip val_seg.zip

run sh ./launch/infer_val_wikiscenes.sh to predict masks. You can find the predicted masks in ./logs/masks.

If you want to evaluate you own models, you will also need to specify:

  • EXP and RUN_ID you used for training;
  • OUTPUT_DIR the path where to save the masks;
  • SNAPSHOT specifies the model suffix in the format e000Xs0.000;

Evaluation. To compute IoU of the masks, run sh ./launch/eval_seg.sh.

Pre-trained model

For testing, we provide our pre-trained ResNet50 model:

Backbone Link
ResNet50 model_enc_e024Xs-0.800.pth (157M)

Datasheet

We provide a datasheet for our dataset here.

License

The images in our dataset are provided by Wikimedia Commons under various free licenses. These licenses permit the use, study, derivation, and redistribution of these images—sometimes with restrictions, e.g. requiring attribution and with copyleft. We provide full license text and attribution for all images, make no modifications to any, and release these images under their original licenses. The associated captions are provided as a part of unstructured text in Wikimedia Commons, with rights to the original writers under the CC BY-SA 3.0 license. We modify these (as specified in our paper) and release such derivatives under the same license. We provide the rest of our dataset under a CC BY-NC-SA 4.0 license.

Citation

@inproceedings{Wu2021Towers,
 title={Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision},
 author={Wu, Xiaoshi and Averbuch-Elor, Hadar and Sun, Jin and Snavely, Noah},
 booktitle={ICCV},
 year={2021}
}

Acknowledgement

Our code is based on the implementation of Single-Stage Semantic Segmentation from Image Labels

Owner
Blakey Wu
Blakey Wu
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022