Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Overview

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles

This project is for the paper: Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles.

Experimental Results

Main Results

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries some packages to be installed:

Downloading Datasets

  • MNIST-M: download it from the Google drive. Extract the files and place them in ./dataset/mnist_m/.
  • SVHN: need to download Format 2 data (*.mat). Place the files in ./dataset/svhn/.
  • USPS: download the usps.h5 file. Place the file in ./dataset/usps/.

Overview of the Code

  • train_model.py: train standard models via supervised learning.
  • train_dann.py: train domain adaptive (DANN) models.
  • eval_pipeline.py: evaluate various methods on all tasks.

Running Experiments

Examples

  • To train a standard model via supervised learning, you can use the following command:

python train_model.py --source-dataset {source dataset} --model-type {model type} --base-dir {directory to save the model}

{source dataset} can be mnist, mnist-m, svhn or usps.

{model type} can be typical_dnn or dann_arch.

  • To train a domain adaptive (DANN) model, you can use the following command:

python train_dann.py --source-dataset {source dataset} --target-dataset {target dataset} --base-dir {directory to save the model} [--test-time]

{source dataset} (or {target dataset}) can be mnist, mnist-m, svhn or usps.

The argument --test-time is to indicate whether to replace the target training dataset with the target test dataset.

  • To evaluate a method on all training-test dataset pairs, you can use the following command:

python eval_pipeline.py --model-type {model type} --method {method}

{model type} can be typical_dnn or dann_arch.

{method} can be conf_avg, ensemble_conf_avg, conf, trust_score, proxy_risk, our_ri or our_rm.

Train All Models

You can run the following scrips to pre-train all models needed for the experiments.

  • run_all_model_training.sh: train all supervised learning models.
  • run_all_dann_training.sh: train all DANN models.
  • run_all_ensemble_training.sh: train all ensemble models.

Evaluate All Methods

You can run the following script to get the results reported in the paper.

  • run_all_evaluation.sh: evaluate all methods on all tasks.

Acknowledgements

Part of this code is inspired by estimating-generalization and TrustScore.

Citation

Please cite our work if you use the codebase:

@article{chen2021detecting,
  title={Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles},
  author={Chen, Jiefeng and Liu, Frederick and Avci, Besim and Wu, Xi and Liang, Yingyu and Jha, Somesh},
  journal={arXiv preprint arXiv:2106.15728},
  year={2021}
}

License

Please refer to the LICENSE.

Owner
Jiefeng Chen
Phd student at UW-Madision, working on trustworthy machine learning.
Jiefeng Chen
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022