Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Overview

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles

This project is for the paper: Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles.

Experimental Results

Main Results

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries some packages to be installed:

Downloading Datasets

  • MNIST-M: download it from the Google drive. Extract the files and place them in ./dataset/mnist_m/.
  • SVHN: need to download Format 2 data (*.mat). Place the files in ./dataset/svhn/.
  • USPS: download the usps.h5 file. Place the file in ./dataset/usps/.

Overview of the Code

  • train_model.py: train standard models via supervised learning.
  • train_dann.py: train domain adaptive (DANN) models.
  • eval_pipeline.py: evaluate various methods on all tasks.

Running Experiments

Examples

  • To train a standard model via supervised learning, you can use the following command:

python train_model.py --source-dataset {source dataset} --model-type {model type} --base-dir {directory to save the model}

{source dataset} can be mnist, mnist-m, svhn or usps.

{model type} can be typical_dnn or dann_arch.

  • To train a domain adaptive (DANN) model, you can use the following command:

python train_dann.py --source-dataset {source dataset} --target-dataset {target dataset} --base-dir {directory to save the model} [--test-time]

{source dataset} (or {target dataset}) can be mnist, mnist-m, svhn or usps.

The argument --test-time is to indicate whether to replace the target training dataset with the target test dataset.

  • To evaluate a method on all training-test dataset pairs, you can use the following command:

python eval_pipeline.py --model-type {model type} --method {method}

{model type} can be typical_dnn or dann_arch.

{method} can be conf_avg, ensemble_conf_avg, conf, trust_score, proxy_risk, our_ri or our_rm.

Train All Models

You can run the following scrips to pre-train all models needed for the experiments.

  • run_all_model_training.sh: train all supervised learning models.
  • run_all_dann_training.sh: train all DANN models.
  • run_all_ensemble_training.sh: train all ensemble models.

Evaluate All Methods

You can run the following script to get the results reported in the paper.

  • run_all_evaluation.sh: evaluate all methods on all tasks.

Acknowledgements

Part of this code is inspired by estimating-generalization and TrustScore.

Citation

Please cite our work if you use the codebase:

@article{chen2021detecting,
  title={Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles},
  author={Chen, Jiefeng and Liu, Frederick and Avci, Besim and Wu, Xi and Liang, Yingyu and Jha, Somesh},
  journal={arXiv preprint arXiv:2106.15728},
  year={2021}
}

License

Please refer to the LICENSE.

Owner
Jiefeng Chen
Phd student at UW-Madision, working on trustworthy machine learning.
Jiefeng Chen
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022