Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Overview

Compressive Visual Representations

This repository contains the source code for our paper, Compressive Visual Representations. We developed information-compressed versions of the SimCLR and BYOL self-supervised learning algorithms, which we call C-SimCLR and C-BYOL, using the Conditional Entropy Bottleneck, and achieved significant improvements in accuracy and robustness, yielding linear evaluation performance competitive with fully supervised models.

cvr_perf

We include implementations of the C-SimCLR and C-BYOL algorithms developed in our paper, as well as SimCLR and BYOL baselines.

Getting Started

Install the necessary dependencies with pip install -r requirements.txt. We recommend creating a new virtual environment.

To train a model with C-SimCLR on ImageNet run bash scripts/csimclr.sh. And to train a model with C-BYOL, run bash scripts/cbyol.sh.

Refer to the scripts for further configuration options, and also to train the corresponding SimCLR and BYOL baselines.

These command lines use the hyperparameters used to train the models in our paper. In particular, we used a batch size of 4096 using 32 Cloud TPUs. Using different accelerators will require reducing the batch size. To get started with Google Cloud TPUs, we recommend following this tutorial.

Checkpoints

The following table contains pretrained checkpoints for C-SimCLR, C-BYOL and also their respective baselines, SimCLR and BYOL. All models are trained on ImageNet. The Top-1 accuracy is obtained by training a linear classifier on top of a ``frozen'' backbone whilst performing self-supervised training of the network.

Algorithm Backbone Training epochs ImageNet Top-1 Checkpoint
SimCLR ResNet 50 1000 71.1 link
SimCLR ResNet 50 2x 1000 74.6 link
C-SimCLR ResNet 50 1000 71.8 link
C-SimCLR ResNet 50 2x 1000 74.7 link
BYOL ResNet 50 1000 74.4 link
BYOL ResNet 50 2x 1000 77.3 link
C-BYOL ResNet 50 1000 75.9 link
C-BYOL ResNet 50 2x 1000 79.1 link
C-BYOL ResNet 101 1000 78.0 link
C-BYOL ResNet 152 1000 78.8 link
C-BYOL ResNet 50 1500 76.0 link

Reference

If you use C-SimCLR or C-BYOL, please use the following BibTeX entry.

@InProceedings{lee2021compressive,
  title={Compressive Visual Representations},
  author={Lee, Kuang-Huei and Arnab, Anurag and Guadarrama, Sergio and Canny, John and Fischer, Ian},
  booktitle={NeurIPS},
  year={2021}
}

Credits

This repository is based on SimCLR. We also match our BYOL implementation in Tensorflow 2 to the original implementation of BYOL in JAX.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023