Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Overview

Welcome to Yearn Gnosis Safe!

This repository contains Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS.

The infrastructure is defined using AWS Cloud Development Kit (AWS CDK). AWS CDK is an open source software development framework to define your cloud application resources using familiar programming languages.

These definitions can then be synthesized to AWS CloudFormation Templates which can be deployed AWS.

Setting up your local environment

Clone this repository.

It is best practice to use an isolated environment when working with this project. To manually create a virtualenv virtual environment on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

At this point you can now synthesize the CloudFormation template for this code.

$ cdk synth

Infrastructure

The following diagram provides a high level overview of the infrastructure that this repository deploys:

Infrastructure Diagram

Source

  1. The production bundle is deployed to an S3 bucket. You should be able to find the URL of the frontend UI by looking at the Bucket website endpoint in the Static website hosting section of the bucket's properties.
  2. The frontend UI uses blockchain nodes to power some of the functionality. You can use a service such as Infura or Alchemy.
  3. The UI performs most of its functionality by communicating with the Client Gateway.
  4. The Client Gateway retrieves information about safes from the transaction service. There is a transaction service deployed for Mainnet and Rinkeby.
  5. The Client Gateway also relies on the configuration service to determine which nodes and services to use for each network.
  6. Secrets store stores credentials for all the different services.
  7. The transaction service monitors Ethereum nodes for new blocks and inspects transactions with the trace API to index new safe related events.

Deploying Gnosis Safe

Deploying can be summarized in the following steps:

  1. Create infrastructure for secrets and add secrets
  2. Build production bundle of the Gnosis Safe UI
  3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)
  4. Index transaction data for existing safes

Prerequisites

Before you start you need to install AWS CDK CLI and bootstrap your AWS account:

  1. Prerequisites
  2. Install AWS CDK Locally
  3. Bootstrapping

The infrastructure in this repository requires a VPC with at least one public subnet. If you don't have a VPC that meets this criteria or want to provision a new VPC for this project, you can follow the instructions here.

To install a self hosted version of Gnosis Safe, you'll also need the following:

  1. An Ethereum Mainnet node with the Openethereum trace api
  2. An Ethereum Rinkeby node with the Openethereum trace api
  3. An Infura API key
  4. An Etherscan API key
  5. An Eth Gas Station API key
  6. An Exchange Rate API key

1. Create infrastructure for secrets and add secrets

Use the AWS CDK CLI to deploy the shared infrastructure including a Secrets Vault where all sensitive secrets will be stored:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy GnosisSafeStack/GnosisShared --require-approval never

CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION define the account and region you're deploying the infrastructure to respectively

The deployment should create a shared secrets vault for all your secrets as well 2 secrets vaults for Postgres database credentials: one for the Rinkeby Transaction Service and one for the Mainnet Transaction Service.

You can distinguish the different vaults by inspecting their tags. The Shared Secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSharedSecrets

Mainnet Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedMainnetTxDatabaseSecret

Rinkeby Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedRinkebyTxDatabaseSecret

Fill out the following credentials in the Shared Secrets vault:

  1. TX_DATABASE_URL_MAINNET - Use the Mainnet Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  2. TX_ETHEREUM_TRACING_NODE_URL_MAINNET - An Ethereum Mainnet node URL that has access to the trace API
  3. TX_ETHEREUM_NODE_URL_MAINNET - An Ethereum Mainnet node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_MAINNET
  4. TX_DJANGO_SECRET_KEY_MAINNET - Generate randomly using openssl rand -base64 18
  5. TX_DATABASE_URL_RINKEBY - Use the Rinkeby Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  6. TX_ETHEREUM_TRACING_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL that has access to the trace API
  7. TX_ETHEREUM_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_RINKEBY
  8. TX_DJANGO_SECRET_KEY_RINKEBY - Generate randomly using openssl rand -base64 18
  9. UI_REACT_APP_INFURA_TOKEN - An Infura API token to use in the Frontend UI
  10. UI_REACT_APP_SAFE_APPS_RPC_INFURA_TOKEN - An Infura API token that you want to use for RPC calls. Can be the same as UI_REACT_APP_INFURA_TOKEN.
  11. CFG_DJANGO_SUPERUSER_EMAIL - The email address for the superuser of the Configuration service
  12. CFG_DJANGO_SUPERUSER_PASSWORD - The password for the superuser of the Configuration service. Randomly generate using openssl rand -base64 18.
  13. CFG_DJANGO_SUPERUSER_USERNAME - The username for the superuser of the Configuration service
  14. CFG_SECRET_KEY - Generate randomly using openssl rand -base64 18
  15. CGW_EXCHANGE_API_KEY - Your Exchange Rate API key
  16. UI_REACT_APP_ETHERSCAN_API_KEY - Your Etherscan API key
  17. CGW_ROCKET_SECRET_KEY - Generate randomly using date |md5 | head -c24; echo
  18. UI_REACT_APP_ETHGASSTATION_API_KEY - Your Eth Gas Station API key
  19. CGW_WEBHOOK_TOKEN - Generate randomly using date |md5 | head -c24; echo
  20. password - Not used. Leave as is.

2. Build production bundle of the Gnosis Safe UI

The Gnosis Safe UI is part of this GitHub repo as a submodule in the docker/ui/safe-react folder. Ensure that the submodule has been initialized:

$ git submodule update --init --recursive

To build the production bundle of the Gnosis Safe UI, use the build script in the docker/ui directory:

$ cd docker/ui
$ ENVIRONMENT_NAME=production ./build.sh
$ ../..

3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)

Deploy the rest of the Gnosis Safe infrastructure:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy --all --require-approval never

4. Index transaction data for existing safes

Indexing happens automatically, however, it can take 12+ hours for indexing to catch up to the most recent transaction. Once indexing is complete, you should be able to add any existing safe.

Docker Containers

This project uses the official Gnosis Safe Docker Images as a base and applies some modifications to support a self-hosted version.

All customized Dockerfiles can be found in the docker/ directory.

Client Gateway

There are no modifications made to the original docker image.

Configuration Service

Adds a new command to bootstrap the configuration service with configurations that replicate the configurations found on the official Gnosis Safe Configuration Service.

The bootstrap command is designed to run only if there are no existing configurations.

Also modifies the default container command run by the container to run the bootstrap command on initialization.

Transactions Service

Installs a new CLI command reindex_master_copies_with_retry and a new Gnosis Safe indexer retryable_index_service that retries if a JSON RPC call fails during indexing. This was added to make indexing more reliable during initial bootstraping after a new install.

Gnosis Safe UI

Contains a git submodule with the official Gnosis Safe UI. It uses the official Gnosis Safe UI repository to build the production bundle.

Before building a production file, some of the original configuration files are replaced. The current official ui hard codes the url for the configuration and transaction services. The configuration files are replaced to point to the newly deployed configuration and transaction services.

Running docker/ui/build.sh will automatically replace the configuration files and build a production bundle.

The UI is the only component that isn't hosted in a docker container. It is hosted as a static website on S3.

Owner
Numan
Numan
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023