Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Overview

Reinforcement Learning with Learned Fourier Features

State-space Soft Actor-Critic Experiments

Move to the state-SAC-LFF repository.

cd state-SAC-LFF

To install the dependencies, use the provided environment.yml file

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 3
python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 2 \
               --network_class FourierMLP --sigma 0.001 --fourier_dim 1024 --train_B --concatenate_fourier

The only thing that changes between the baseline is the number of hidden layers (we reduce by 1 to keep parameter count roughly the same), the network_class, the fourier_dim, sigma, train_B, and concatenate_fourier.

Image-space Soft Actor-Critic Experiments

Move to the image-SAC-LFF repository.

cd image-SAC-LFF

Install RAD dependencies:

conda env create -f conda_env.yml

To run an experiment, the template for CNN and CNN+LFF experiments, respectively, are:

python train.py --domain_name hopper --task_name hop --encoder_type fourier_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000 --fourier_dim 128 --sigma 0.1 --train_B --concatenate_fourier
python train.py --domain_name hopper --task_name hop --encoder_type fair_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000

Proximal Policy Optimization Experiments

Move to the state-PPO-LFF repository.

cd pytorch-a2c-ppo-acktr-gail

Install PPO dependencies:

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class MLP --n_hidden 2 --seed 10
python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class FourierMLP --n_hidden 2 --sigma 0.01 --fourier_dim 64 \ 
               --concatenate_fourier --train_B --seed 10

Acknowledgements

We built the state-based SAC codebase off the TD3 repo by Fujimoto et al. We especially appreciated its lightweight bare-bones training loop. For the state-based SAC algorithm implementation and hyperparameters, we used this PyTorch SAC repo by Yarats and Kostrikov. For the SAC+RAD image-based experiments, we used the authors' implementation. Finally, we built off this PPO codebase by Ilya Kostrikov.

Owner
Alex Li
PhD student in machine learning at Carnegie Mellon University. Prev: undergrad at UC Berkeley.
Alex Li
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022