Official code release for: EditGAN: High-Precision Semantic Image Editing

Overview

EditGAN

Official code release for:

EditGAN: High-Precision Semantic Image Editing

Huan Ling*, Karsten Kreis*, Daiqing Li, Seung Wook Kim, Antonio Torralba, Sanja Fidler

(* authors contributed equally)

NeurIPS 2021

[project page] [paper] [supplementary material]

Demos and results

Left: The video showcases EditGAN in an interacitve demo tool. Right: The video demonstrates EditGAN where we apply multiple edits and exploit pre-defined editing vectors. Note that the demo is accelerated. See paper for run times.

Left: The video shows interpolations and combinations of multiple editing vectors. Right: The video presents the results of applying EditGAN editing vectors on out-of-domain images.

Requirements

  • Python 3.8 is supported.

  • Pytorch >= 1.4.0.

  • The code is tested with CUDA 10.1 toolkit with Pytorch==1.4.0 and CUDA 11.4 with Pytorch==1.10.0.

  • All results in our paper are based on NVIDIA Tesla V100 GPUs with 32GB memory.

  • Set up python environment:

virtualenv env
source env/bin/activate
pip install -r requirements.txt
  • Add the project to PYTHONPATH:
export PYTHONPATH=$PWD

Use of pre-trained model

We released a pre-trained model for the car class. Follow these steps to set up our interactive WebAPP:

  • Download all checkpoints from checkpoints and put them into a ./checkpoint folder:

    • ./checkpoint/stylegan_pretrain: Download the pre-trained checkpoint from StyleGAN2 and convert the tensorflow checkpoint to pytorch. We also released the converted checkpoint for your convenience.
    • ./checkpoint/encoder_pretrain: Pre-trained encoder.
    • ./checkpoint/encoder_pretrain/testing_embedding: Test image embeddings.
    • ./checkpoint/encoder_pretrain/training_embedding: Training image embeddings.
    • ./checkpoint/datasetgan_pretrain: Pre-trained DatasetGAN (segmentation branch).
  • Run the app using python run_app.py.

  • The app is then deployed on the web browser at locolhost:8888.

Training your own model

Here, we provide step-by-step instructions to create a new EditGAN model. We use our fully released car class as an example.

  • Step 0: Train StyleGAN.

    • Download StyleGAN training images from LSUN.

    • Train your own StyleGAN model using the official StyleGAN2 code and convert the tensorflow checkpoint to pytorch. Note the specific "stylegan_checkpoint" fields in experiments/datasetgan_car.json ; experiments/encoder_car.json ; experiments/tool_car.json.

  • Step 1: Train StyleGAN Encoder.

    • Specify location of StyleGAN checkpoint in the "stylegan_checkpoint" field in experiments/encoder_car.json.

    • Specify path with training images downloaded in Step 0 in the "training_data_path" field in experiments/encoder_car.json.

    • Run python train_encoder.py --exp experiments/encoder_car.json.

  • Step 2: Train DatasetGAN.

    • Specify "stylegan_checkpoint" field in experiments/datasetgan_car.json.

    • Download DatasetGAN training images and annotations from drive and fill in "annotation_mask_path" in experiments/datasetgan_car.json.

    • Embed DatasetGAN training images in latent space using

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path data/annotation_car_32_clean --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      

      and complete "optimized_latent_path" in experiments/datasetgan_car.json.

    • Train DatasetGAN (interpreter branch for segmentation) via

      python train_interpreter.py --exp experiments/datasetgan_car.json
      
  • Step 3: Run the app.

    • Download DatasetGAN test images and annotations from drive.

    • Embed DatasetGAN test images in latent space via

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path *testing image path* --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      
    • Specify the "stylegan_checkpoint", "encoder_checkpoint", "classfier_checkpoint", "datasetgan_testimage_embedding_path" fields in experiments/tool_car.json.

    • Run the app via python run_app.py.

Citations

Please use the following citation if you use our data or code:

@inproceedings{ling2021editgan,
  title = {EditGAN: High-Precision Semantic Image Editing}, 
  author = {Huan Ling and Karsten Kreis and Daiqing Li and Seung Wook Kim and Antonio Torralba and Sanja Fidler},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

License

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. Please see our main LICENSE file.

License Dependencies

For any code dependencies related to StyleGAN2, the license is the Nvidia Source Code License-NC by NVIDIA Corporation, see StyleGAN2 LICENSE.

For any code dependencies related to DatasetGAN, the license is the MIT License, see DatasetGAN LICENSE.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

For any code dependencies related to the frontend tool (including html, css and Javascript), the license is the Nvidia Source Code License-NC. To view a copy of this license, visit ./static/LICENSE.md. To view a copy of terms of usage, visit ./static/term.txt.

NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022