A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Related tags

Deep LearningPNG
Overview

❇️   ❇️     Please visit our Project Page to learn more about Panoptic Narrative Grounding.    ❇️   ❇️

Panoptic Narrative Grounding

This repository provides a PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral). Panoptic Narrative Grounding is a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics, and we propose a strong baseline method to serve as stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level by using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. The proposed baseline achieves a performance of 55.4 absolute Average Recall points. This result is a suitable foundation to push the envelope further in the development of methods for Panoptic Narrative Grounding.

Paper

Panoptic Narrative Grounding,
Cristina González1, Nicolás Ayobi1, Isabela Hernández1, José Hernández 1, Jordi Pont-Tuset2, Pablo Arbeláez1
ICCV 2021 Oral.

1 Center for Research and Formation in Artificial Intelligence (CINFONIA) , Universidad de Los Andes.
2 Google Research, Switzerland.

Installation

Requirements

  • Python
  • Numpy
  • Pytorch 1.7.1
  • Tqdm 4.56.0
  • Scipy 1.5.3

Cloning the repository

$ git clone [email protected]:BCV-Uniandes/PNG.git
$ cd PNG

Dataset Preparation

Panoptic Marrative Grounding Benchmark

  1. Download the 2017 MSCOCO Dataset from its official webpage. You will need the train and validation splits' images1 and panoptic segmentations annotations.

  2. Download the Panoptic Narrative Grounding Benchmark and pre-computed features from our project webpage with the following folders structure:

panoptic_narrative_grounding
|_ images
|  |_ train2017
|  |_ val2017
|_ features
|  |_ train2017
|  |  |_ mask_features
|  |  |_ sem_seg_features
|  |  |_ panoptic_seg_predictions
|  |_ val2017
|     |_ mask_features
|     |_ sem_seg_features
|     |_ panoptic_seg_predictions
|_ annotations
   |_ png_coco_train2017.json
   |_ png_coco_val2017.json
   |_ panoptic_segmentation
      |_ train2017
      |_ val2017

Train setup:

Modify the routes in train_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir

Test setup:

Modify the routes in test_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir TRAIN.ENABLE "False"

Pretrained model

To reproduce all our results as reported bellow, you can use our pretrained model and our source code.

Method things + stuff things stuff
Oracle 64.4 67.3 60.4
Ours 55.4 56.2 54.3
MCN - 48.2 -
Method singulars + plurals singulars plurals
Oracle 64.4 64.8 60.7
Ours 55.4 56.2 48.8

Citation

If you find Panoptic Narrative Grounding useful in your research, please use the following BibTeX entry for citation:

@inproceedings{gonzalez2021png,
  title={Panoptic Narrative Grounding},
  author={Gonz{\'a}lez, Cristina and Ayobi, Nicol{'\a}s and Hern{\'a}ndez, Isabela and Hern{\'a}ndez, Jose and Pont-Tuset, Jordi and Arbel{\'a}ez, Pablo},
  booktitle={ICCV},
  year={2021}
}
Owner
Biomedical Computer Vision @ Uniandes
Our field of research is computer vision, the area of artificial intelligence seeking automated understanding of visual information
Biomedical Computer Vision @ Uniandes
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021