Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Overview

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

This repository is the official PyTorch implementation of Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (arxiv, supplementary).

🚀 🚀 🚀 News:


Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

Requirements

  • Python 3.7, PyTorch >= 1.6, scipy >= 1.6.3
  • Requirements: opencv-python
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5

Note: this repository is based on BasicSR. Please refer to their repository for a better understanding of the code framework.

Quick Run

Download stage3_MANet+RRDB_x4.pth from release and put it in ./pretrained_models. Then, run this command:

cd codes
python test.py --opt options/test/test_stage3.yml

Data Preparation

To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used datasets can be downloaded here.

Training

Step1: to train MANet, run this command:

python train.py --opt options/train/train_stage1.yml

Step2: to train non-blind RRDB, run this command:

python train.py --opt options/train/train_stage2.yml

Step3: to fine-tune RRDB with MANet, run this command:

python train.py --opt options/train/train_stage3.yml

All trained models can be downloaded from release. For testing, downloading stage3 models is enough.

Testing

To test MANet (stage1, kernel estimation only), run this command:

python test.py --opt options/test/test_stage1.yml

To test RRDB-SFT (stage2, non-blind SR with ground-truth kernel), run this command:

python test.py --opt options/test/test_stage2.yml

To test MANet+RRDB (stage3, blind SR), run this command:

python test.py --opt options/test/test_stage3.yml

Note: above commands generate LR images on-the-fly. To generate testing sets used in the paper, run this command:

python prepare_testset.py --opt options/test/prepare_testset.yml

Interactive Exploration of Kernels

To explore spaitally variant kernels on an image, use --save_kernel and run this command to save kernel:

python test.py --opt options/test/test_stage1.yml --save_kernel

Then, run this command to creat an interactive window:

python interactive_explore.py --path ../results/001_MANet_aniso_x4_test_stage1/toy_dataset1/npz/toy1.npz

Results

We conducted experiments on both spatially variant and invariant blind SR. Please refer to the paper and supp for results.

Citation

@inproceedings{liang21manet,
  title={Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution},
  author={Liang, Jingyun and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on BasicSR, MMSR, IKC and KAIR. Please also follow their licenses. Thanks for their great works.

Comments
  • Training and OOM

    Training and OOM

    Thanks for your code. I tried to train the model with train_stage1.yml, and the Cuda OOM. I am using 2080 Ti, I tried to reduce the batch size from 16 to 2 and the GT_size from 192 to 48. However, the training still OOM. May I know is there anything I missed? Thanks.

    opened by hcleung3325 9
  • [How to get SR image by spatially variant estimated blur kernels]

    [How to get SR image by spatially variant estimated blur kernels]

    Hi, Thank you for your excellent and interesting work! I'm not so clear about the process after kernels estimation during SR reconstruction after reading your paper. Could you please explain?

    opened by CaptainEven 7
  • The method of creating kernels

    The method of creating kernels

    I noticed that the function for creating kernel ('anisotropic_gaussian_kernel_matlab') is different from the standard gaussian distribution (e.g. the method that used in IKC, https://github.com/yuanjunchai/IKC/blob/2a846cf1194cd9bace08973d55ecd8fd3179fe48/codes/utils/util.py#L244). I am wondering why a different way is used here. Actually, a test dataset created by IKC with same sigma range seems to have poor performance on MANet, and vice versa.

    opened by zhiqiangfu 3
  • [import error]

    [import error]

        k = scipy.stats.multivariate_normal.pdf(pos, mean=[0, 0], cov=cov)
    AttributeError: module 'scipy' has no attribute 'stats'
    

    scipy version error? So, which version of scipy is required?

    opened by CaptainEven 2
  • A letter from afar

    A letter from afar

    Good evening, boss! I recently discovered your work about MANet.I found that the length of the gaussian kernel your method generated is equal to 18.Does this setting have any specific meaning? image

    opened by fenghao195 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • About LR_Image PSNR/SSIM

    About LR_Image PSNR/SSIM

    Many thanks for your excellent work!

    I wonder what is the LR_Image PSNR/SSIM in the ablation study to evaluate the MANet about kernel prediction, and how to compute these?

    opened by Shaosifan 0
  • Questions about the paper

    Questions about the paper

    Thanks again for your great work. I have several questions about the paper. In Figure 2, you mentioned the input for MANet is a LR, but the input for your code seems to be DIV2K GT. Is there any further process I miss? Also, is that possible for the whole model trained in y-channel since my deployed environment only deals with y-channel? Thanks.

    opened by mrgreen3325 0
  • Issue about class BatchBlur_SV in utils.util

    Issue about class BatchBlur_SV in utils.util

    MANet/codes/utils/util.py Line 661: kernel = kernel.flatten(2).unsqueeze(0).expand(3,-1,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[1, B, HW, l^2] ->[C, B, HW, l^2] I think it is wrong, because it is not corresponding to the shape of pad.

    The line 661 should be kernel = kernel.flatten(2).unsqueeze(1).expand(-1, 3,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[B, 1, HW, l^2] ->[B, C, HW, l^2]

    opened by jiangmengyu18 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022