Pytorch implementation of the unsupervised object discovery method LOST.

Related tags

Deep LearningLOST
Overview

LOST

Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper:

Localizing Objects with Self-Supervised Transformers and no Labels [arXiv]
by Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Marlet and Jean Ponce

LOST visualizations LOST visualizations


If you use the LOST code or framework in your research, please consider citing:

@article{LOST,
   title = {Localizing Objects with Self-Supervised Transformers and no Labels},
   author = {Oriane Sim\'eoni and Gilles Puy and Huy V. Vo and Simon Roburin and Spyros Gidaris and Andrei Bursuc and Patrick P\'erez and Renaud Marlet and Jean Ponce},
   journal = {arXiv preprint arXiv:2109.14279},
   month = {09},
   year = {2021}
}

Installation

Dependencies

This code was implemented with python 3.7, PyTorch 1.7.1 and CUDA 10.2. Please install PyTorch. In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

Install DINO

This method is based on DINO paper. The framework can be installed using the following commands:

> __init__.py; cd ../; ">
git clone https://github.com/facebookresearch/dino.git
cd dino; 
touch __init__.py
echo -e "import sys\nfrom os.path import dirname, join\nsys.path.insert(0, join(dirname(__file__), '.'))" >> __init__.py; cd ../;

The code was made using the commit ba9edd1 of DINO repo (please rebase if breakage).

Apply LOST to one image

Following are scripts to apply LOST to an image defined via the image_path parameter and visualize the predictions (pred), the maps of the Figure 2 in the paper (fms) and the visulization of the seed expansion (seed_expansion). Box predictions are also stored in the output directory given by parameter output_dir.

python main_lost.py --image_path examples/VOC07_000236.jpg --visualize pred
python main_lost.py --image_path examples/VOC07_000236.jpg --visualize fms
python main_lost.py --image_path examples/VOC07_000236.jpg --visualize seed_expansion

Launching on datasets

Following are the different steps to reproduce the results of LOST presented in the paper.

PASCAL-VOC

Please download the PASCAL VOC07 and PASCAL VOC12 datasets (link) and put the data in the folder datasets. There should be the two subfolders: datasets/VOC2007 and datasets/VOC2012. In order to apply lost and compute corloc results (VOC07 61.9, VOC12 64.0), please launch:

python main_lost.py --dataset VOC07 --set trainval
python main_lost.py --dataset VOC12 --set trainval

COCO

Please download the COCO dataset and put the data in datasets/COCO. Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 50.7), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_lost.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 61.9 64.0 50.7
ViT-S/8 DINO 55.5 57.0 49.5
ViT-B/16 DINO 60.1 63.3 50.0
ResNet50 DINO 36.8 42.7 26.5
ResNet50 Imagenet 33.5 39.1 25.5


Previous results on the dataset VOC07 can be obtained by launching:

python main_lost.py --dataset VOC07 --set trainval #VIT-S/16
python main_lost.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_lost.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16
python main_lost.py --dataset VOC07 --set trainval --arch resnet50 #Resnet50/DINO
python main_lost.py --dataset VOC07 --set trainval --arch resnet50_imagenet #Resnet50/imagenet
Comments
  • Is LOST designed to perform well with DINO features specifically?

    Is LOST designed to perform well with DINO features specifically?

    I've replaced LOST's backbone (basically the dino weights) with the ones in CLIP, and it did not work well. But when switching back to dino weights, both ViT and ResNet50 backbone could generate good feature maps. Why would this happen?

    question 
    opened by zengyuy 3
  • Error in evaluation with Detectron2

    Error in evaluation with Detectron2

    Hi @osimeoni,

    Thank you for making the code available!

    When evaluating Detectron2 on VOC12 with the obtained pseudolables. I obtain the following error: AttributeError: "int object has no attribute 'value'. It seems that the coco_style_file is not registered by 'register_coco_instances' (see image underneath). Any idea how this can be fixed? Thanks.

    image

    opened by MarcVisions 2
  • Class-aware detection

    Class-aware detection

    Do you plan on releasing code for class-aware detection (i.e., to produce the results in Table 3 of https://arxiv.org/pdf/2109.14279.pdf)? I don't believe I see any of the necessary code for assigning object categories to boxes, but please correct me if I'm wrong.

    opened by gholste 2
  • Multi-object discovery

    Multi-object discovery

    HI, I have a confusion about the interesting work. How to perform multi-target discovery in the figure 1 (middle) of your paper? Any advice is greatly appreciated.

    question 
    opened by rgbd-zml 1
  • Lost not performing well using DINO with fine-tuning

    Lost not performing well using DINO with fine-tuning

    I’ve trained DINO’s model with my own Dataset, doing a finetuning on the ViT’s pre trained models of DINO. After a feel experiments I noticed that, every time that a epoch of the DINO’s finetune ran, the loss of the training reduce, however the IoU (the validation metric that we are using) of the bounding boxes generated by the LOST algorithm gets worse. Can anyone explain me why this is happening and how can I fix it?

    opened by ericyoshida 1
  • corLoc evaluation

    corLoc evaluation

    Hi @osimeoni . I am suspicious about the corLoc evaluation part in the code. The corLoc for each image is true whenever one of the ground truth objects is hit! https://github.com/valeoai/LOST/blob/2b678aca89c18aa79c56ec3f6d4a0b979a91608d/main_lost.py#L311 What about other objects? Is it right?

    opened by Mirsadeghi 1
Owner
Valeo.ai
The GitHub account of Valeo.ai
Valeo.ai
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022