The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Overview

NTIRE 2022 - Image Inpainting Challenge

Important dates

  • 2022.02.01: Release of train data (input and output images) and validation data (only input)
  • 2022.02.01: Validation server online
  • 2022.03.13: Final test data release (only input images)
  • 2022.03.20: Test output results submission deadline
  • 2022.03.20: Fact sheets and code/executable submission deadline
  • 2022.03.22: Preliminary test results release to the participants
  • 2022.04.01: Paper submission deadline for entries from the challenge
  • 2022.06.19: Workshop day

Description

The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Image manipulation is a key computer vision task, aiming at the restoration of degraded image content, the filling in of missing information, or the needed transformation and/or manipulation to achieve the desired target (with respect to perceptual quality, contents, or performance of apps working on such images). Recent years have witnessed an increased interest from the vision and graphics communities in these fundamental topics of research. Not only has there been a constantly growing flow of related papers, but also substantial progress has been achieved.

Recently, there has been a substantial increase in the number of published papers that directly or indirectly address Image Inpainting. Due to a lack of a standardized framework, it is difficult for a new method to perform a comprehensive and fair comparison with respect to existing solutions. This workshop aims to provide an overview of the new trends and advances in those areas. Moreover, it will offer an opportunity for academic and industrial attendees to interact and explore collaborations.

Jointly with the NTIRE workshop, we have an NTIRE challenge on Image Inpainting, that is, the task of predicting the values of missing pixels in an image so that the completed result looks realistic and coherent. This challenge has 3 main objectives:

  1. Direct comparison of recent state-of-the-art Image Inpainting solutions, which will be considered as baselines. See baselines.
  2. To perform a comprehensive analysis on the different types of masks, for instance, strokes, half completion, nearest neighbor upsampling, etc. Thus, highlighting the pros and cons of each method for each type of mask. See Type of masks.
  3. To set a public benchmark on 4 different datasets (FFHQ, Places, ImageNet, and WikiArt) for direct and easy comparison. See data.

This challenge has 2 tracks:

Main Goal

The aim is to obtain a mask agnostic network design/solution capable of producing high-quality results with the best perceptual quality with respect to the ground truth.

Type of Masks

In addition to the typical strokes, with this challenge, we aim at more generalizable solutions.

Thick Strokes Medium Strokes Thin Strokes
Every_N_Lines Completion Expand
Nearest_Neighbor

Data

Following a common practice in Image Inpainting methods, we use three popular datasets for our challenge: FFHQ, Places, and ImageNet. Additionally, to explore a new benchmark, we also use the WikiArt dataset to tackle inpainting towards art creation. See the data for more info about downloading the datasets.

Competition

The top-ranked participants will be awarded and invited to follow the CVPR submission guide for workshops to describe their solutions and to submit to the associated NTIRE workshop at CVPR 2022.

Evaluation

See Evaluation.

Provided Resources

  • Scripts: With the dataset, the organizers will provide scripts to facilitate the reproducibility of the images and performance evaluation results after the validation server is online. More information is provided on the data page.
  • Contact: You can use the forum on the data description page (Track1 and Track 2 - highly recommended!) or directly contact the challenge organizers by email (me [at] afromero.co, a.castillo13 [at] uniandes.edu.co, and Radu.Timofte [at] vision.ee.ethz.ch) if you have doubts or any question.

Issues and questions:

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

Terms and conditions

The terms and conditions for participating in the challenge are provided here

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

Owner
Andrés Romero
Postdoctoral Researcher
Andrés Romero
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022