Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Overview

All Contributors

Do you want a RL agent nicely moving on Atari?

Rainbow is all you need!

This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains both of theoretical backgrounds and object-oriented implementation. Just pick any topic in which you are interested, and learn! You can execute them right away with Colab even on your smartphone.

Please feel free to open an issue or a pull-request if you have any idea to make it better. :)

If you want a tutorial for policy gradient methods, please see PG is All You Need.

Contents

  1. DQN [NBViewer] [Colab]
  2. DoubleDQN [NBViewer] [Colab]
  3. PrioritizedExperienceReplay [NBViewer] [Colab]
  4. DuelingNet [NBViewer] [Colab]
  5. NoisyNet [NBViewer] [Colab]
  6. CategoricalDQN [NBViewer] [Colab]
  7. N-stepLearning [NBViewer] [Colab]
  8. Rainbow [NBViewer] [Colab]

Prerequisites

This repository is tested on Anaconda virtual environment with python 3.7+

$ conda create -n rainbow-is-all-you-need python=3.7
$ conda activate rainbow-is-all-you-need

Installation

First, clone the repository.

git clone https://github.com/Curt-Park/rainbow-is-all-you-need.git
cd rainbow-is-all-you-need

Secondly, install packages required to execute the code. Just type:

make setup

Related Papers

  1. V. Mnih et al., "Human-level control through deep reinforcement learning." Nature, 518 (7540):529–533, 2015.
  2. van Hasselt et al., "Deep Reinforcement Learning with Double Q-learning." arXiv preprint arXiv:1509.06461, 2015.
  3. T. Schaul et al., "Prioritized Experience Replay." arXiv preprint arXiv:1511.05952, 2015.
  4. Z. Wang et al., "Dueling Network Architectures for Deep Reinforcement Learning." arXiv preprint arXiv:1511.06581, 2015.
  5. M. Fortunato et al., "Noisy Networks for Exploration." arXiv preprint arXiv:1706.10295, 2017.
  6. M. G. Bellemare et al., "A Distributional Perspective on Reinforcement Learning." arXiv preprint arXiv:1707.06887, 2017.
  7. R. S. Sutton, "Learning to predict by the methods of temporal differences." Machine learning, 3(1):9–44, 1988.
  8. M. Hessel et al., "Rainbow: Combining Improvements in Deep Reinforcement Learning." arXiv preprint arXiv:1710.02298, 2017.

Contributors

Thanks goes to these wonderful people (emoji key):


Jinwoo Park (Curt)

💻 📖

Kyunghwan Kim

💻

Wei Chen

🚧

WANG Lei

🚧

leeyaf

💻

ahmadF

📖

This project follows the all-contributors specification. Contributions of any kind welcome!

Owner
Jinwoo Park (Curt)
A domain-independent problem-solver
Jinwoo Park (Curt)
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022