TriMap: Large-scale Dimensionality Reduction Using Triplets

Related tags

Deep Learningtrimap
Overview

TriMap

TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet constraints are of the form "point i is closer to point j than point k". The triplets are sampled from the high-dimensional representation of the points and a weighting scheme is used to reflect the importance of each triplet.

TriMap provides a significantly better global view of the data than the other dimensionality reduction methods such t-SNE, LargeVis, and UMAP. The global structure includes relative distances of the clusters, multiple scales in the data, and the existence of possible outliers. We define a global score to quantify the quality of an embedding in reflecting the global structure of the data.

CIFAR-10 dataset (test set) passed through a CNN (n = 10,000, d = 1024): Notice the semantic structure unveiled by TriMap.

Visualizations of the CIFAR-10 dataset

The following implementation is in Python. Further details and more experimental results are available in the paper.

How to use TriMap

TriMap has a transformer API similar to other sklearn libraries. To use TriMap with the default parameters, simply do:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP().fit_transform(digits.data)

To find the embedding using a precomputed pairwise distance matrix D, pass D as input and set use_dist_matrix to True:

embedding = trimap.TRIMAP(use_dist_matrix=True).fit_transform(D)

You can also pass the precomputed k-nearest neighbors and their corresponding distances as a tuple (knn_nbrs, knn_distances). Note that the rows must be in order, starting from point 0 to n-1. This feature also requires X to compute the embedding

embedding = trimap.TRIMAP(knn_tuple=(knn_nbrs, knn_distances)).fit_transform(X)

To calculate the global score, do:

gs = trimap.TRIMAP(verbose=False).global_score(digits.data, embedding)
print("global score %2.2f" % gs)

Parameters

The list of parameters is given blow:

  • n_dims: Number of dimensions of the embedding (default = 2)
  • n_inliers: Number of nearest neighbors for forming the nearest neighbor triplets (default = 10).
  • n_outliers: Number of outliers for forming the nearest neighbor triplets (default = 5).
  • n_random: Number of random triplets per point (default = 5).
  • distance: Distance measure ('euclidean' (default), 'manhattan', 'angular', 'hamming')
  • weight_adj: The value of gamma for the log-transformation (default = 500.0).
  • lr: Learning rate (default = 1000.0).
  • n_iters: Number of iterations (default = 400).

The other parameters include:

  • knn_tuple: Use the precomputed nearest-neighbors information in form of a tuple (knn_nbrs, knn_distances) (default = None)
  • use_dist_matrix: Use the precomputed pairwise distance matrix (default = False)
  • apply_pca: Reduce the number of dimensions of the data to 100 if necessary before applying the nearest-neighbor search (default = True).
  • opt_method: Optimization method {'sd' (steepest descent), 'momentum' (GD with momentum), 'dbd' (delta-bar-delta, default)}.
  • verbose: Print the progress report (default = True).
  • return_seq: Store the intermediate results and return the results in a tensor (default = False).

An example of adjusting these parameters:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP(n_inliers=20,
                          n_outliers=10,
                          n_random=10,
                          weight_adj=1000.0).fit_transform(digits.data)

The nearest-neighbor calculation is performed using ANNOY.

Examples

The following are some of the results on real-world datasets. The values of nearest-neighbor accuracy and global score are shown as a pair (NN, GS) on top of each figure. For more results, please refer to our paper.

USPS Handwritten Digits (n = 11,000, d = 256)

Visualizations of the USPS dataset

20 News Groups (n = 18,846, d = 100)

Visualizations of the 20 News Groups dataset

Tabula Muris (n = 53,760, d = 23,433)

Visualizations of the Tabula Muris Mouse Tissues dataset

MNIST Handwritten Digits (n = 70,000, d = 784)

Visualizations of the MNIST dataset

Fashion MNIST (n = 70,000, d = 784)

Visualizations of the  Fashion MNIST dataset

TV News (n = 129,685, d = 100)

Visualizations of the  TV News dataset

Runtime of t-SNE, LargeVis, UMAP, and TriMap in the hh:mm:ss format on a single machine with 2.6 GHz Intel Core i5 CPU and 16 GB of memory is given in the following table. We limit the runtime of each method to 12 hours. Also, UMAP runs out of memory on datasets larger than ~4M points.

Runtime of TriMap compared to other methods

Installing

Requirements:

  • numpy
  • scikit-learn
  • numba
  • annoy

Installing annoy

If you are having trouble with installing annoy on macOS using the command:

pip3 install annoy

you can alternatively try:

pip3 install git+https://github.com/sutao/[email protected]

Install Options

If you have all the requirements installed, you can use pip:

sudo pip install trimap

Please regularly check for updates and make sure you are using the most recent version. If you have TriMap installed and would like to upgrade to the newer version, you can use the command:

sudo pip install --upgrade --force-reinstall trimap

An alternative is to install the dependencies manually using anaconda and using pip to install TriMap:

conda install numpy
conda install scikit-learn
conda install numba
conda install annoy
pip install trimap

For a manual install get this package:

wget https://github.com/eamid/trimap/archive/master.zip
unzip master.zip
rm master.zip
cd trimap-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn numba annoy

Install the package

python setup.py install

Support and Contribution

This implementation is still a work in progress. Any comments/suggestions/bug-reports are highly appreciated. Please feel free contact me at: [email protected]. If you would like to contribute to the code, please fork the project and send me a pull request.

Citation

If you use TriMap in your publications, please cite our current reference on arXiv:

@article{2019TRIMAP,
     author = {{Amid}, Ehsan and {Warmuth}, Manfred K.},
     title = "{TriMap: Large-scale Dimensionality Reduction Using Triplets}",
     journal = {arXiv preprint arXiv:1910.00204},
     archivePrefix = "arXiv",
     eprint = {1910.00204},
     year = 2019,
}

License

Please see the LICENSE file.

Owner
Ehsan Amid
Research Scientist at Google Mountain View
Ehsan Amid
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022