TriMap: Large-scale Dimensionality Reduction Using Triplets

Related tags

Deep Learningtrimap
Overview

TriMap

TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet constraints are of the form "point i is closer to point j than point k". The triplets are sampled from the high-dimensional representation of the points and a weighting scheme is used to reflect the importance of each triplet.

TriMap provides a significantly better global view of the data than the other dimensionality reduction methods such t-SNE, LargeVis, and UMAP. The global structure includes relative distances of the clusters, multiple scales in the data, and the existence of possible outliers. We define a global score to quantify the quality of an embedding in reflecting the global structure of the data.

CIFAR-10 dataset (test set) passed through a CNN (n = 10,000, d = 1024): Notice the semantic structure unveiled by TriMap.

Visualizations of the CIFAR-10 dataset

The following implementation is in Python. Further details and more experimental results are available in the paper.

How to use TriMap

TriMap has a transformer API similar to other sklearn libraries. To use TriMap with the default parameters, simply do:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP().fit_transform(digits.data)

To find the embedding using a precomputed pairwise distance matrix D, pass D as input and set use_dist_matrix to True:

embedding = trimap.TRIMAP(use_dist_matrix=True).fit_transform(D)

You can also pass the precomputed k-nearest neighbors and their corresponding distances as a tuple (knn_nbrs, knn_distances). Note that the rows must be in order, starting from point 0 to n-1. This feature also requires X to compute the embedding

embedding = trimap.TRIMAP(knn_tuple=(knn_nbrs, knn_distances)).fit_transform(X)

To calculate the global score, do:

gs = trimap.TRIMAP(verbose=False).global_score(digits.data, embedding)
print("global score %2.2f" % gs)

Parameters

The list of parameters is given blow:

  • n_dims: Number of dimensions of the embedding (default = 2)
  • n_inliers: Number of nearest neighbors for forming the nearest neighbor triplets (default = 10).
  • n_outliers: Number of outliers for forming the nearest neighbor triplets (default = 5).
  • n_random: Number of random triplets per point (default = 5).
  • distance: Distance measure ('euclidean' (default), 'manhattan', 'angular', 'hamming')
  • weight_adj: The value of gamma for the log-transformation (default = 500.0).
  • lr: Learning rate (default = 1000.0).
  • n_iters: Number of iterations (default = 400).

The other parameters include:

  • knn_tuple: Use the precomputed nearest-neighbors information in form of a tuple (knn_nbrs, knn_distances) (default = None)
  • use_dist_matrix: Use the precomputed pairwise distance matrix (default = False)
  • apply_pca: Reduce the number of dimensions of the data to 100 if necessary before applying the nearest-neighbor search (default = True).
  • opt_method: Optimization method {'sd' (steepest descent), 'momentum' (GD with momentum), 'dbd' (delta-bar-delta, default)}.
  • verbose: Print the progress report (default = True).
  • return_seq: Store the intermediate results and return the results in a tensor (default = False).

An example of adjusting these parameters:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP(n_inliers=20,
                          n_outliers=10,
                          n_random=10,
                          weight_adj=1000.0).fit_transform(digits.data)

The nearest-neighbor calculation is performed using ANNOY.

Examples

The following are some of the results on real-world datasets. The values of nearest-neighbor accuracy and global score are shown as a pair (NN, GS) on top of each figure. For more results, please refer to our paper.

USPS Handwritten Digits (n = 11,000, d = 256)

Visualizations of the USPS dataset

20 News Groups (n = 18,846, d = 100)

Visualizations of the 20 News Groups dataset

Tabula Muris (n = 53,760, d = 23,433)

Visualizations of the Tabula Muris Mouse Tissues dataset

MNIST Handwritten Digits (n = 70,000, d = 784)

Visualizations of the MNIST dataset

Fashion MNIST (n = 70,000, d = 784)

Visualizations of the  Fashion MNIST dataset

TV News (n = 129,685, d = 100)

Visualizations of the  TV News dataset

Runtime of t-SNE, LargeVis, UMAP, and TriMap in the hh:mm:ss format on a single machine with 2.6 GHz Intel Core i5 CPU and 16 GB of memory is given in the following table. We limit the runtime of each method to 12 hours. Also, UMAP runs out of memory on datasets larger than ~4M points.

Runtime of TriMap compared to other methods

Installing

Requirements:

  • numpy
  • scikit-learn
  • numba
  • annoy

Installing annoy

If you are having trouble with installing annoy on macOS using the command:

pip3 install annoy

you can alternatively try:

pip3 install git+https://github.com/sutao/[email protected]

Install Options

If you have all the requirements installed, you can use pip:

sudo pip install trimap

Please regularly check for updates and make sure you are using the most recent version. If you have TriMap installed and would like to upgrade to the newer version, you can use the command:

sudo pip install --upgrade --force-reinstall trimap

An alternative is to install the dependencies manually using anaconda and using pip to install TriMap:

conda install numpy
conda install scikit-learn
conda install numba
conda install annoy
pip install trimap

For a manual install get this package:

wget https://github.com/eamid/trimap/archive/master.zip
unzip master.zip
rm master.zip
cd trimap-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn numba annoy

Install the package

python setup.py install

Support and Contribution

This implementation is still a work in progress. Any comments/suggestions/bug-reports are highly appreciated. Please feel free contact me at: [email protected]. If you would like to contribute to the code, please fork the project and send me a pull request.

Citation

If you use TriMap in your publications, please cite our current reference on arXiv:

@article{2019TRIMAP,
     author = {{Amid}, Ehsan and {Warmuth}, Manfred K.},
     title = "{TriMap: Large-scale Dimensionality Reduction Using Triplets}",
     journal = {arXiv preprint arXiv:1910.00204},
     archivePrefix = "arXiv",
     eprint = {1910.00204},
     year = 2019,
}

License

Please see the LICENSE file.

Owner
Ehsan Amid
Research Scientist at Google Mountain View
Ehsan Amid
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022