Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Overview

ToeplitzLDA

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from label proportions (LLP) example or the example script.

Note we used Ubuntu 20.04 with python 3.8.10 to generate our results.

Getting Started / User Setup

If you only want to use this library, you can use the following setup. Note that this setup is based on a fresh Ubuntu 20.04 installation.

Getting fresh ubuntu ready

apt install python3-pip python3-venv

Python package installation

In this setup, we assume you want to run the examples that actually make use of real EEG data or the actual unsupervised speller replay. If you only want to employ ToeplitzLDA in your own spatiotemporal data / without mne and moabb then you can remove the package extra neuro, i.e. pip install toeplitzlda or pip install toeplitzlda[solver]

  1. (Optional) Install fortran Compiler. On ubuntu: apt install gfortran
  2. Create virtual environment: python3 -m venv toeplitzlda_venv
  3. Activate virtual environment: source toeplitzlda_venv/bin/activate
  4. Install toeplitzlda: pip install toeplitzlda[neuro,solver], if you dont have a fortran compiler: pip install toeplitzlda[neuro]

Check if everything works

Either clone this repo or just download the scripts/example_toeplitz_lda_bci_data.py file and run it: python example_toeplitz_lda_bci_data.py. Note that this will automatically download EEG data with a size of around 650MB.

Alternatively, you can use the scripts/example_toeplitz_lda_generated_data.py where artificial data is generated. Note however, that only stationary background noise is modeled and no interfering artifacts as is the case in, e.g., real EEG data. As a result, the overfitting effect of traditional slda on these artifacts is reduced.

Using ToeplitzLDA in place of traditional shrinkage LDA from sklearn

If you have already your own pipeline, you can simply add toeplitzlda as a dependency in your project and then replace sklearns LDA, i.e., instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

use

from toeplitzlda.classification import ToeplitzLDA
clf = ToeplitzLDA(n_channels=your_n_channels)

where your_n_channels is the number of channels of your signal and needs to be provided for this method to work.

If you prefer using sklearn, you can only replace the covariance estimation part, note however, that this in practice (on our data) yields worse performance, as sklearn estimates the class-wise covariance matrices and averages them afterwards, whereas we remove the class-wise means and the estimate one covariance matrix from the pooled data.

So instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

you would use

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from toeplitzlda.classification.covariance import ToepTapLW
toep_cov = ToepTapLW(n_channels=your_n_channels)
clf = LinearDiscriminantAnalysis(solver="lsqr", covariance_estimator=toep_cov)  # or eigen solver

Development Setup

We use a fortran compiler to provide speedups for solving block-Toeplitz linear equation systems. If you are on ubuntu you can install gfortran.

We use poetry for dependency management. If you have it installed you can simply use poetry install to set up the virtual environment with all dependencies. All extra features can be installed with poetry install -E solver,neuro.

If setup does not work for you, please open an issue. We cannot guarantee support for many different platforms, but could provide a singularity image.

Learning from label proportions

Use the run_llp.py script to apply ToeplitzLDA in the LLP scenario and create the results file for the different preprocessing parameters. These can then be visualized using visualize_llp.py to create the plots shown in our publication. Note that running LLP takes a while and the two datasets will be downloaded automatically and are approximately 16GB in size. Alternatively, you can use the results provided by us that are stored in scripts/usup_replay/provided_results by moving/copying them to the location that visualize_llp.py looks for.

ERP benchmark

This is not yet available.

Note this benchmark will take quite a long time if you do not have access to a computing cluster. The public datasets (including the LLP datasets) total a size of approximately 120GB.

BLOCKING TODO: How should we handle the private datasets?

FAQ

Why is my classification performance for my stationary spatiotemporal data really bad?

Check if your data is in channel-prime order, i.e., in the flattened feature vector, you first enumerate over all channels (or some other spatially distributed sensors) for the first time point and then for the second time point and so on. If this is not the case, tell the classifier: e.g. ToeplitzLDA(n_channels=16, data_is_channel_prime=False)

Owner
Jan Sosulski
Jan Sosulski
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022