[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

Overview

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring

License CC BY-NC

Checkout for the demo (GUI/Google Colab)!
The GUI version might occasionally be offline

This repository contains the official PyTorch implementation of the following paper:

Iterative Filter Adaptive Network for Single Image Defocus Deblurring
Junyong Lee, Hyeongseok Son, Jaesung Rim, Sunghyun Cho, Seungyong Lee, CVPR 2021

About the Research

Click here

Iterative Filter Adaptive Network (IFAN)

Our deblurring network is built upon a simple encoder-decoder architecture consisting of a feature extractor, reconstructor, and IFAN module in the middle. The feature extractor extracts defocused features and feeds them to IFAN. IFAN removes blur in the feature domain by predicting spatially-varying deblurring filters and applying them to the defocused features using IAC. The deblurred features from IFAN is then passed to the reconstructor, which restores an all-in-focus image.

Iterative Adaptive Convolution Layer

The IAC layer iteratively computes feature maps as follows (refer Eq. 1 in the main paper):

Separable filters in our IAC layer play a key role in resolving the limitation of the FAC layer. Our IAC layer secures larger receptive fields at much lower memory and computational costs than the FAC layer by utilizing 1-dim filters, instead of 2-dim convolutions. However, compared to dense 2-dim convolution filters in the FAC layer, our separable filters may not provide enough accuracy for deblurring filters. We handle this problem by iteratively applying separable filters to fully exploit the non-linear nature of a deep network. Our iterative scheme also enables small-sized separable filters to be used for establishing large receptive fields.

Disparity Map Estimation & Reblurring

To further improve the single image deblurring quality, we train our network with novel defocus-specific tasks: defocus disparity estimation and reblurring.

Disparity Map Estimation exploits dual-pixel data, which provides stereo images with a tiny baseline, whose disparities are proportional to defocus blur magnitudes. Leveraging dual-pixel stereo images, we train IFAN to predict the disparity map from a single image so that it can also learn to more accurately predict blur magnitudes.

Reblurring, motivated by the reblur-to-deblur scheme, utilizes deblurring filters predicted by IFAN for reblurring all-in-focus images. For accurate reblurring, IFAN needs to predict deblurring filters that contain accurate information about the shapes and sizes of defocus blur. Based on this, during training, we introduce an additional network that inverts predicted deblurring filters to reblurring filters, and reblurs an all-in-focus image.

The Real Depth of Field (RealDOF) test set

We present the Real Depth of Field (RealDOF) test set for quantitative and qualitative evaluations of single image defocus deblurring. Our RealDOF test set contains 50 image pairs, each of which consists of a defocused image and its corresponding all-in-focus image that have been concurrently captured for the same scene, with the dual-camera system. Refer Sec. 1 in the supplementary material for more details.

Getting Started

Prerequisites

Tested environment

Ubuntu Python PyTorch CUDA

  1. Environment setup

    $ git clone https://github.com/codeslake/IFAN.git
    $ cd IFAN
    
    $ conda create -y --name IFAN python=3.8 && conda activate IFAN
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip test sets (DPDD, PixelDP, CUHK and RealDOF) under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── DPDD
      │   ├── PixelDP
      │   ├── CUHK
      │   ├── RealDOF
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/defocus_deblur/, which can be modified by config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── IFAN.pytorch
      │   ├── ...
      │   ├── IFAN_dual.pytorch
      

Testing models of CVPR2021

## Table 2 in the main paper
# Our final model used for comparison
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN --network IFAN --config config_IFAN --data DPDD --ckpt_abs_name ckpt/IFAN.pytorch

## Table 4 in the main paper
# Our final model with N=8
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_8 --network IFAN --config config_IFAN_8 --data DPDD --ckpt_abs_name ckpt/IFAN_8.pytorch

# Our final model with N=26
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_26 --network IFAN --config config_IFAN_26 --data DPDD --ckpt_abs_name ckpt/IFAN_26.pytorch

# Our final model with N=35
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_35 --network IFAN --config config_IFAN_35 --data DPDD --ckpt_abs_name ckpt/IFAN_35.pytorch

# Our final model with N=44
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_44 --network IFAN --config config_IFAN_44 --data DPDD --ckpt_abs_name ckpt/IFAN_44.pytorch

## Table 1 in the supplementary material
# Our model trained with 16 bit images
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_16bit --network IFAN --config config_IFAN_16bit --data DPDD --ckpt_abs_name ckpt/IFAN_16bit.pytorch

## Table 2 in the supplementary material
# Our model taking dual-pixel stereo images as an input
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_dual --network IFAN_dual --config config_IFAN --data DPDD --ckpt_abs_name ckpt/IFAN_dual.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/IFAN_CVPR2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • Options
    • --data: The name of a dataset to evaluate. DPDD | RealDOF | CUHK | PixelDP | random. Default: DPDD
      • The folder structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any images, which should be placed as [DATASET_ROOT]/random/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@InProceedings{Lee_2021_CVPR,
    author = {Lee, Junyong and Son, Hyeongseok and Rim, Jaesung and Cho, Sunghyun and Lee, Seungyong},
    title = {Iterative Filter Adaptive Network for Single Image Defocus Deblurring},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
Supplementary
Checkpoint Files
The DPDD dataset (reference)
The PixelDP test set (reference)
The CUHK dataset (reference)
The RealDOF test set

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please checkout other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022