Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Overview

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Introduction

image

This is the official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022). We evaluate our methods on three datasets, DRIVE, CHASE_DB1 and STARE.

Datesets

You can download the three datasets from Google drive.
Of course, you can download the dataset from DRIVE, CHASE_DB1 and STARE respectively.

Quick start

Requirement

  1. Refer to Pytorch to install Pytorch >= 1.1.
  2. pip install -r requirements.txt

Config file

DATASET: "DRIVE"

TRAIN_DATA_PATH: ".../training/images" # modify it to your own path
TRAIN_LABEL_PATH: ".../training/1st_manual"


TEST_DATA_PATH: ".../test/images"
TEST_PRED_PATH: "results/test/DRIVE/prediction"
TEST_LABEL_PATH: ".../test/label/1st_manual"

# view
#VAL_PICTURE_PATH: "/gdata1/limx/mx/dataset/Drive19/visualization"
#VIEW_VAL_PATH: "results/val_view"
#VIEW_TRAIN_PATH: "results/train_view"

MODEL_PATH: "results/test/DRIVE/model"
LOG_PATH: "results/test/DRIVE/logging.txt"

# train
LEARNING_RATE: 0.005
BATCH_SIZE: 5
EPOCH: 6000
CHECK_BATCH: 50
multi_scale: [0.3]
INPUT_CHANNEL: 3
MAX_AFFINITY: 5
RCE_WEIGHT: 1
RCE_RATIO: 10

# inference
MODEL_NUMBER: "epoch_2750_f1_0.8261"
# load breakpoint
IS_BREAKPOINT: False
BREAKPOINT: ""


Please modify TRAIN_DATA_PATH, TRAIN_LABEL_PATH, TEST_DATA_PATH and TEST_LABEL_PATH.

Training

Please specify the configuration file.
For example, you can run .sh file to train the specific dataset.

cd rootdir
sh pbs/DRIVE_RUN.sh

After finishing the training stage, you will obtain the /results/test/DRIVE/logging.txt. The logging.txt file can log the metrics, like model number, f1, auc, acc, specificity, precision, sensitivity.

Testing

Please select the best model in loggging.txt and modify the MODEL_NUMBER in configuration file.

cd rootdir
python inference.py --lib/DRIVE.yaml 

Evaluation

To evalutate the results offline bewteen cfg['TEST_PRED_PATH'] and cfg['TEST_LABEL_PATH']. Your can run the code like it.

cd rootdir
python eval.py --lib/DRIVE.yaml 
Owner
anonymous
anonymous
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022