Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Overview

Struct-MDC

video

journal arxiv

(click the above buttons for redirection!)


Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural Regularities from Visual SLAM", which is accepted in IEEE RA-L'22 (IROS'22 are still being under-reviewed.)

  • Depth completion from Visual(-inertial) SLAM using point & line features.

README & code & Dataset are still being edited.

  • Code (including source code, utility code for visualization) & Dataset will be finalized & released soon! (goal: I'm still organizing the code structure, until publish date)
  • version info
    • (04/20) docker image has been uploaded.
    • (04/21) Dataset has been uploaded.
    • (04/21) Visusal-SLAM module (modified UV-SLAM) has been uploaded.



Results

  • 3D Depth estimation results
    • VOID (left three columns) and NYUv2 (right three columns)
    • detected features (top row), estimation from baseline (middle row) and ours (bottom row)

  • 2D Depth estimation results
Ground truth Baseline Struct-MDC (Ours)



Installation

1. Prerequisites (we've validated our code in the following environment!)

  • Common
  • Visual-SLAM module
    • OpenCV 3.2.0 (under 3.4.1)
    • Ceres Solver-1.14.0
    • Eigen-3.3.9
    • CDT library
      git clone https://github.com/artem-ogre/CDT.git
      cd CDT
      mkdir build && cd build
      cmake -DCDT_USE_AS_COMPILED_LIBRARY=ON -DCDT_USE_BOOST=ON ..
      cmake --build . && cmake --install .
      sudo make install
      
  • Depth completion module
    • Python 3.7.7
    • PyTorch 1.5.0 (you can easily reproduce equivalent environment using our docker image)

2. Build

  • Visual-SLAM module

    • As visual-SLAM, we modified the UV-SLAM, which is implemented in ROS environment.
    • make sure that your catkin workspace has following cmake args: -DCMAKE_BUILD_TYPE=Release
    cd ~/$(PATH_TO_YOUR_ROS_WORKSPACE)/src
    git clone --recursive https://github.com/url-kaist/Struct-MDC
    cd ..
    catkin build
    source ~/$(PATH_TO_YOUR_ROS_WORKSPACE)/devel/setup.bash
    
  • Depth completion module

    • Our depth compeltion module is based on the popular Deep-Learning framework, PyTorch.
    • For your convenience, we share our environment as Docker image. We assume that you have already installed the Docker. For Docker installation, please refer here
    # pull our docker image into your local machine
    docker pull zinuok/nvidia-torch:latest
    
    # run the image mounting our source
    docker run -it --gpus "device=0" -v $(PATH_TO_YOUR_LOCAL_FOLER):/workspace zinuok/nvidia-torch:latest bash
    

3. Trouble shooting

  • any issues found will be updated in this section.
  • if you've found any other issues, please post it on Issues tab. We'll do our best to resolve your issues.
Owner
Urban Robotics Lab. @ KAIST
Urban Robotics Lab. @ KAIST
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022