Cross-Modal Contrastive Learning for Text-to-Image Generation

Overview

Cross-Modal Contrastive Learning for Text-to-Image Generation

This repository hosts the open source JAX implementation of XMC-GAN.

Setup instructions

Environment

Set up virtualenv, and install required libraries:

virtualenv venv
source venv/bin/activate

Add the XMC-GAN library to PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:/home/path/to/xmcgan/root/

JAX Installation

Note: Please follow the official JAX instructions for installing a GPU compatible version of JAX.

Other Dependencies

After installing JAX, install the remaining dependencies with:

pip install -r requirements.txt

Preprocess COCO-2014

To create the training and eval data, first start a directory. By default, the training scripts expect to save results in data/ in the base directory.

mkdir data/

The TFRecords required for training and validation on COCO-2014 can be created by running a preprocessing script over the TFDS coco_captions dataset:

python preprocess_data.py

This may take a while to complete, as it runs a pretrained BERT model over the captions and stores the embeddings. With a GPU, it runs in about 2.5 hours for train, and 1 hour for validation. Once it is done, the train and validation tfrecords files will be saved in the data/ directory. The train files require around 58G of disk space, and the validation requires 29G.

Note: If you run into an error related to TensorFlow gfile, one workaround is to edit site-packages/bert/tokenization.py and change tf.gfile.GFile to tf.io.gfile.GFile. For more details, refer to the following link.

If you run into a tensorflow.python.framework.errors_impl.ResourceExhaustedError about having too many open files, you may have to increase the machine's open file limits. To do so, open the limit configuration file for editing:

vi /etc/security/limits.conf

and append the following lines to the end of the file:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

You may have to adjust the limit values depending on your machine. You will need to logout and login to your machine for these values to take effect.

Download Pretrained ResNet

To train XMC-GAN, we need a network pretrained on ImageNet to extract features. For our purposes, we train a ResNet-50 network for this. To download the weights, run:

gsutil cp gs://gresearch/xmcgan/resnet_pretrained.npy data/

If you would like to pretrain your own network on ImageNet, please refer to the official Flax ImageNet example.

Training

Start a training run, by first editing train.sh to specify an appropriate work directory. By default, the script assumes that 8 GPUs are available, and runs training on the first 7 GPUs, while test.sh assumes testing will run on the last GPU. After configuring the training job, start an experiment by running it on bash:

mkdir exp
bash train.sh exp_name &> train.txt

Checkpoints and Tensorboard logs will be saved in /path/to/exp/exp_name. By default, the configs/coco_xmc.py config is used, which runs an experiment for 128px images. This is able to accommodate a batch size of 8 on each GPU, and achieves an FID of around 10.5 - 11.0 with the EMA weights. To reproduce the full results on 256px images in our paper, the full model needs to be run using a 32-core Pod slice of Google Cloud TPU v3 devices.

Evaluation

To run an evaluation job, update test.sh with the correct settings used in the training script. Then, execute

bash test.sh exp_name &> eval.txt

to start an evaluation job. All checkpoints in workdir will be evaluated for FID and Inception Score. If you can spare the GPUs, you can also run train.sh and test.sh in parallel, which will continuously evaluate new checkpoints saved into the work directory. Scores will be written to Tensorboard and output to eval.txt.

Tensorboard

To start a Tensorboard for monitoring training progress, run:

tensorboard --logdir /path/to/exp/exp_name

Citation

If you find this work useful, please consider citing:

@inproceedings{zhang2021cross,
  title={Cross-Modal Contrastive Learning for Text-to-Image Generation},
  author={Zhang, Han and Koh, Jing Yu and Baldridge, Jason and Lee, Honglak and Yang, Yinfei},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Disclaimer

Not an official Google product.

Owner
Google Research
Google Research
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022