Super Resolution for images using deep learning.

Overview

Neural Enhance

docs/OldStation_example.gif

Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens.


As seen on TV! What if you could increase the resolution of your photos using technology from CSI laboratories? Thanks to deep learning and #NeuralEnhance, it's now possible to train a neural network to zoom in to your images at 2x or even 4x. You'll get even better results by increasing the number of neurons or training with a dataset similar to your low resolution image.

The catch? The neural network is hallucinating details based on its training from example images. It's not reconstructing your photo exactly as it would have been if it was HD. That's only possible in Hollywood — but using deep learning as "Creative AI" works and it is just as cool! Here's how you can get started...

  1. Examples & Usage
  2. Installation
  3. Background & Research
  4. Troubleshooting
  5. Frequent Questions

Python Version License Type Project Stars

docs/EnhanceCSI_example.png

1. Examples & Usage

The main script is called enhance.py, which you can run with Python 3.4+ once it's setup as below. The --device argument that lets you specify which GPU or CPU to use. For the samples above, here are the performance results:

  • GPU Rendering HQ — Assuming you have CUDA setup and enough on-board RAM to fit the image and neural network, generating 1080p output should complete in 5 seconds, or 2s per image if multiple at the same time.
  • CPU Rendering HQ — This will take roughly 20 to 60 seconds for 1080p output, however on most machines you can run 4-8 processes simultaneously given enough system RAM. Runtime depends on the neural network size.

The default is to use --device=cpu, if you have NVIDIA card setup with CUDA already try --device=gpu0. On the CPU, you can also set environment variable to OMP_NUM_THREADS=4, which is most useful when running the script multiple times in parallel.

1.a) Enhancing Images

A list of example command lines you can use with the pre-trained models provided in the GitHub releases:

# Run the super-resolution script to repair JPEG artefacts, zoom factor 1:1.
python3 enhance.py --type=photo --model=repair --zoom=1 broken.jpg

# Process multiple good quality images with a single run, zoom factor 2:1.
python3 enhance.py --type=photo --zoom=2 file1.jpg file2.jpg

# Display output images that were given `_ne?x.png` suffix.
open *_ne?x.png

Here's a list of currently supported models, image types, and zoom levels in one table.

FEATURES --model=default --model=repair --model=denoise --model=deblur
--type=photo 2x 1x

1.b) Training Super-Resolution

Pre-trained models are provided in the GitHub releases. Training your own is a delicate process that may require you to pick parameters based on your image dataset.

# Remove the model file as don't want to reload the data to fine-tune it.
rm -f ne?x*.pkl.bz2

# Pre-train the model using perceptual loss from paper [1] below.
python3.4 enhance.py --train "data/*.jpg" --model custom --scales=2 --epochs=50 \
    --perceptual-layer=conv2_2 --smoothness-weight=1e7 --adversary-weight=0.0 \
    --generator-blocks=4 --generator-filters=64

# Train the model using an adversarial setup based on [4] below.
python3.4 enhance.py --train "data/*.jpg" --model custom --scales=2 --epochs=250 \
         --perceptual-layer=conv5_2 --smoothness-weight=2e4 --adversary-weight=1e3 \
         --generator-start=5 --discriminator-start=0 --adversarial-start=5 \
         --discriminator-size=64

# The newly trained model is output into this file...
ls ne?x-custom-*.pkl.bz2

docs/BankLobby_example.gif

Example #2 — Bank Lobby: view comparison in 24-bit HD, original photo CC-BY-SA @benarent.

2. Installation & Setup

2.a) Using Docker Image [recommended]

The easiest way to get up-and-running is to install Docker. Then, you should be able to download and run the pre-built image using the docker command line tool. Find out more about the alexjc/neural-enhance image on its Docker Hub page.

Here's the simplest way you can call the script using docker, assuming you're familiar with using -v argument to mount folders you can use this directly to specify files to enhance:

# Download the Docker image and show the help text to make sure it works.
docker run --rm -v `pwd`:/ne/input -it alexjc/neural-enhance --help

Single Image — In practice, we suggest you setup an alias called enhance to automatically expose the folder containing your specified image, so the script can read it and store results where you can access them. This is how you can do it in your terminal console on OSX or Linux:

# Setup the alias. Put this in your .bashrc or .zshrc file so it's available at startup.
alias enhance='function ne() { docker run --rm -v "$(pwd)/`dirname ${@:$#}`":/ne/input -it alexjc/neural-enhance ${@:1:$#-1} "input/`basename ${@:$#}`"; }; ne'

# Now run any of the examples above using this alias, without the `.py` extension.
enhance --zoom=1 --model=repair images/broken.jpg

Multiple Images — To enhance multiple images in a row (faster) from a folder or wildcard specification, make sure to quote the argument to the alias command:

# Process multiple images, make sure to quote the argument!
enhance --zoom=2 "images/*.jpg"

If you want to run on your NVIDIA GPU, you can instead change the alias to use the image alexjc/neural-enhance:gpu which comes with CUDA and CUDNN pre-installed. Then run it within nvidia-docker and it should use your physical hardware!

2.b) Manual Installation [developers]

This project requires Python 3.4+ and you'll also need numpy and scipy (numerical computing libraries) as well as python3-dev installed system-wide. If you want more detailed instructions, follow these:

  1. Linux Installation of Lasagne (intermediate)
  2. Mac OSX Installation of Lasagne (advanced)
  3. Windows Installation of Lasagne (expert)

Afterward fetching the repository, you can run the following commands from your terminal to setup a local environment:

# Create a local environment for Python 3.x to install dependencies here.
python3 -m venv pyvenv --system-site-packages

# If you're using bash, make this the active version of Python.
source pyvenv/bin/activate

# Setup the required dependencies simply using the PIP module.
python3 -m pip install --ignore-installed -r requirements.txt

After this, you should have pillow, theano and lasagne installed in your virtual environment. You'll also need to download this pre-trained neural network (VGG19, 80Mb) and put it in the same folder as the script to run. To de-install everything, you can just delete the #/pyvenv/ folder.

docs/Faces_example.png

Example #3 — Specialized super-resolution for faces, trained on HD examples of celebrity faces only. The quality is significantly higher when narrowing the domain from "photos" in general.

3. Background & Research

This code uses a combination of techniques from the following papers, as well as some minor improvements yet to be documented (watch this repository for updates):

  1. Perceptual Losses for Real-Time Style Transfer and Super-Resolution
  2. Real-Time Super-Resolution Using Efficient Sub-Pixel Convolution
  3. Deeply-Recursive Convolutional Network for Image Super-Resolution
  4. Photo-Realistic Super-Resolution Using a Generative Adversarial Network

Special thanks for their help and support in various ways:

  • Eder Santana — Discussions, encouragement, and his ideas on sub-pixel deconvolution.
  • Andrew Brock — This sub-pixel layer code is based on his project repository using Lasagne.
  • Casper Kaae Sønderby — For suggesting a more stable alternative to sigmoid + log as GAN loss functions.

4. Troubleshooting Problems

Can't install or Unable to find pgen, not compiling formal grammar.

There's a Python extension compiler called Cython, and it's missing or improperly installed. Try getting it directly from the system package manager rather than PIP.

FIX: sudo apt-get install cython3

NotImplementedError: AbstractConv2d theano optimization failed.

This happens when you're running without a GPU, and the CPU libraries were not found (e.g. libblas). The neural network expressions cannot be evaluated by Theano and it's raising an exception.

FIX: sudo apt-get install libblas-dev libopenblas-dev

TypeError: max_pool_2d() got an unexpected keyword argument 'mode'

You need to install Lasagne and Theano directly from the versions specified in requirements.txt, rather than from the PIP versions. These alternatives are older and don't have the required features.

FIX: python3 -m pip install -r requirements.txt

ValueError: unknown locale: UTF-8

It seems your terminal is misconfigured and not compatible with the way Python treats locales. You may need to change this in your .bashrc or other startup script. Alternatively, this command will fix it once for this shell instance.

FIX: export LC_ALL=en_US.UTF-8

docs/StreetView_example.gif

Example #4 — Street View: view comparison in 24-bit HD, original photo CC-BY-SA @cyalex.


Python Version License Type Project Stars

Comments
  • remove deprecated package from enhance.py

    remove deprecated package from enhance.py

    scipy.ndimage.imread was deprecated in 2017 with the release of scipy 1.0 and finally removed in 1.2.0 (see issue #229)

    There is however documentation for transitioning to imageio here The most relevant change is instead of mode use the pilmode keyword argument.

    imageio is documented here

    opened by JarradTait 2
  • readme: Fix docker alias

    readme: Fix docker alias

    Some users have file not found issues because path isn't correct. This is because the shell alias evaluates the $(pwd) at alias evaluation, and not at command execution time. Changing this to single quotes fixes this.

    This resolves GH#28 and GH#17.

    opened by purpleidea 2
  • Fix histogram matching with scipy 0.17.0

    Fix histogram matching with scipy 0.17.0

    WIth my setup (scipy 0.17.0) option --rendering-histogram distorted colors in regions where a color component attained its maximum value. This PR corrects that.

    opened by AlexeyKruglov 1
  • image resolution check

    image resolution check

    When training on larger --batch-resolution than 300, some images in the OpenImages dataset are too small. This PR fixes those in the same way that corrupted images are ignored.

    opened by graphific 1
  • Remove cnmem theano flag

    Remove cnmem theano flag

    If you're sharing your GPU with your display, using 100% of memory with lib.cnmem=1 fails with CNMEM_STATUS_OUT_OF_MEMORY. I was able to make cnmem work with a 0.8 value, but not 0.9. I think it depends on the size of your GPU mem vs the resolution of your display so there's no 'best value.'

    Since the comment says if you know what you're doing you can change it, then it's probably best to have failsafe defaults for beginners, so this just doesn't use cnmem at all.

    fixes #19

    opened by msfeldstein 1
  • Move generation of seeds out of training network

    Move generation of seeds out of training network

    This moves the generation of the image seeds out of the training network and into the DataLoader. Currently seeds are computed as a bilinear downsampling of the original image.

    This is almost functionally equivalent to the version it replaces, but opens up new possibilities at training time because the seeds are now decoupled from the network. For example, seeds could be made with different interpolations or even with other transformations such as image compression.

    opened by dribnet 1
  • added --images-glob and added feedback on training images

    added --images-glob and added feedback on training images

    Added --images-glob so that training images could be specified explicitly. Still defaults to 'dataset//.jpg' as before.

    Added a check that the number of training files is not zero. Now issues an error instead of going into infinite loop. The number of training images found is also printed out to the console.

    opened by dribnet 1
  • Fix duplicate param definition

    Fix duplicate param definition

    Caused by https://github.com/alexjc/neural-enhance/commit/203917d1227e3c5b26668aefe481cc1756bee42f - currently producing this error:

    Traceback (most recent call last):
      File "enhance.py", line 40, in <module>
        add_arg('--model',              default='small', type=str,          help='Name of the neural network to load/save.')
      File "/opt/conda/lib/python3.5/argparse.py", line 1344, in add_argument
        return self._add_action(action)
      File "/opt/conda/lib/python3.5/argparse.py", line 1707, in _add_action
        self._optionals._add_action(action)
      File "/opt/conda/lib/python3.5/argparse.py", line 1548, in _add_action
        action = super(_ArgumentGroup, self)._add_action(action)                                                                                                              
      File "/opt/conda/lib/python3.5/argparse.py", line 1358, in _add_action                                                                                                  
        self._check_conflict(action)                                                                                                                                          
      File "/opt/conda/lib/python3.5/argparse.py", line 1497, in _check_conflict                                                                                              
        conflict_handler(action, confl_optionals)
      File "/opt/conda/lib/python3.5/argparse.py", line 1506, in _handle_conflict_error
        raise ArgumentError(action, message % conflict_string)
    argparse.ArgumentError: argument --model: conflicting option string: --model
    
    opened by OndraM 0
  • Work without deprecated SciPy methods (Py3.9+)

    Work without deprecated SciPy methods (Py3.9+)

    -In the last version SciPy some methods have been deprecated. -Methods have been replaced to PIL* & imageio*

    --------------------More details--------------------

    -The read method has been replaced from "scipy.ndimage.imread(filename, mode='RGB')" to "imageio.imread(filename, as_gray=False, pilmode="RGB")" -The return buffer has been replaced from "scipy.misc.toimage(output, cmin=0, cmax=255)" to "PIL.Image.fromarray((output).astype('uint8'), mode='RGB')"

    opened by xavetar 0
Releases(v0.3)
Owner
Alex J. Champandard
Artificial Intelligence specialist, co-Founded creative.ai, Director nucl.ai conference, Deep Learning, ex-R☆/Guerrilla Games Senior AI Programmer.
Alex J. Champandard
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022