Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Related tags

Deep LearningPASF
Overview

Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Beining Han,   Chongyi Zheng,   Harris Chan,   Keiran Paster,   Michael R. Zhang,   Jimmy Ba

paper

Summary: Deep Reinforcement Learning agents often face unanticipated environmental changes after deployment in the real world. These changes are often spurious and unrelated to the underlying problem, such as background shifts for visual input agents. Unfortunately, deep RL policies are usually sensitive to these changes and fail to act robustly against them. This resembles the problem of domain generalization in supervised learning. In this work, we study this problem for goal-conditioned RL agents. We propose a theoretical framework in the Block MDP setting that characterizes the generalizability of goal-conditioned policies to new environments. Under this framework, we develop a practical method PA-SkewFit (PASF) that enhances domain generalization.

@article{han2021learning,
  title={Learning Domain Invariant Representations in Goal-conditioned Block MDPs},
  author={Han, Beining and Zheng, Chongyi and Chan, Harris and Paster, Keiran and Zhang, Michael and Ba, Jimmy},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Installation

Our code was adapted from rlkit and was tested on a Ubuntu 20.04 server.

This instruction assumes that you have already installed NVIDIA driver, Anaconda, and MuJoCo.

You'll need to get your own MuJoCo key if you want to use MuJoCo.

1. Create Anaconda environment

Install the included Anaconda environment

$ conda env create -f environment/pasf_env.yml
$ source activate pasf_env
(pasf_env) $ python

2. Download the goals

Download the goals from the following link and put it here: (PASF DIR)/multiworld/envs/mujoco.

$ ls (PASF DIR)/multiworld/envs/mujoco
... goals ... 
  1. (Optional) Speed up with GPU rendering

3. (Optional) Speed-up with GPU rendering

Note: GPU rendering for mujoco-py speeds up training a lot but consumes more GPU memory at the same time.

Check this Issues:

Remember to do this stuff with the mujoco-py package inside of your pasf_env.

Running Experiments

The following command run the PASF experiments for the four tasks: Reach, Door, Push, Pickup, in the learning curve respectively.

$ source activate pasf_env
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_reach_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_door_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_push_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_pickup_lc_exp.bash
  • The bash scripts only set equation, equation, and equation with the exact values we used for LC. But you can play with other hyperparameters in python scripts under (PASF DIR)/experiment.

  • Training and evaluation environments are chosen in python scripts for each task. You can find the backgrounds in (PASF DIR)/multiworld/core/background and domains in (PASF DIR)/multiworld/envs/assets/sawyer_xyz.

  • Results are recorded in progress.csv under (PASF DIR)/data/ and variant.json contains configuration for each experiment.

  • We simply set random seeds as 0, 1, 2, etc., and run experiments with 6-9 different seeds for each task.

  • Error and output logs can be found in (PASF DIR)/terminal_log.

Questions

If you have any questions, comments, or suggestions, please reach out to Beining Han ([email protected]) and Chongyi Zheng ([email protected]).

Owner
Chongyi Zheng
Chongyi Zheng
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023