Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

Related tags

Deep LearningERICA
Overview

ERICA

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

The code is based on huggingface's transformers, the trained models and pre-training data can be downloaded from Google Drive.

Quick Start

You can quickly run our code by following steps:

  • Install dependencies as described in following section.
  • cd to pretrain or finetune directory then download and pre-process data for pre-training or finetuning.

1. Dependencies

Run the following script to install dependencies.

pip install -r requirement.txt

You need to install transformers and apex manually.

transformers We use huggingface transformers to implement Bert and RoBERTa, and the version is 2.5.0. For convenience, we have downloaded transformers into code/pretrain/ so you can easily import it, and we have also modified some lines in the class BertForMaskedLM in src/transformers/modeling_bert.py while keeping the other codes unchanged.

You just need run

pip install .

to install transformers manually.

apex Install apex under the offical guidance.

process pretraining data

In folder prepare_pretrain_data, we provide the codes for processing pre-training data.

2. Pretraining

To pretrain ERICA_bert:

cd code/pretrain

python -m torch.distributed.launch --nproc_per_node 8  main.py  \
    --model DOC  --lr 3e-5 --batch_size_per_gpu 16 --max_epoch 105  \
    --gradient_accumulation_steps 16    --save_step 500  --temperature 0.05  \
    --train_sample  --save_dir ckpt_doc_dw_f_alpha_1_uncased --n_gpu 8  --debug 1  --add_none 1 \
    --alpha 1 --flow 0 --dataset_name none.json  --wiki_loss 1 --doc_loss 1 \
    --change_dataset 1  --start_end_token 0 --bert_model bert \
    --pretraining_size -1 --ablation 0 --cased 0

some explanations for hyper-parameters: temperature (\tau used in loss function of contrastive learning); debug (whether to debug (we provide an example_debug file for pre-training); add_none (whether to add no_relation pair in RD loss); alpha (the proportion of masking (1 means no masking, in experiments, we find masking is not helpful as is described in the main paper, so for all models, we do not mask in the pre-training phase. However, we leave this function here for further research explorations.)); flow (if masking, whether to use a linear decay); wiki_loss (whether to add ED loss); doc_loss (whether to add RD loss); start_end_token (use another entity encoding method); cased (whether to use cased version of BERT).

3. Fine-tuning

Enter each folder for downstream task (document-level / sentence-level relation extraction, entity typing and question answering) fine-tuning. Before fine-tuning, we assume you have already pre-trained an ERICA model. Excecute the bash in each folder for reimplementation.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022