Global Filter Networks for Image Classification

Overview

Global Filter Networks for Image Classification

Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou

This repository contains PyTorch implementation for GFNet.

Global Filter Networks is a transformer-style architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity. Our architecture replaces the self-attention layer in vision transformers with three key operations: a 2D discrete Fourier transform, an element-wise multiplication between frequency-domain features and learnable global filters, and a 2D inverse Fourier transform.

intro

Our code is based on pytorch-image-models and DeiT.

[Project Page] [arXiv]

Global Filter Layer

GFNet is a conceptually simple yet computationally efficient architecture, which consists of several stacking Global Filter Layers and Feedforward Networks (FFN). The Global Filter Layer mixes tokens with log-linear complexity benefiting from the highly efficient Fast Fourier Transform (FFT) algorithm. The layer is easy to implement:

import torch
import torch.nn as nn
import torch.fft

class GlobalFilter(nn.Module):
    def __init__(self, dim, h=14, w=8):
        super().__init__()
        self.complex_weight = nn.Parameter(torch.randn(h, w, dim, 2, dtype=torch.float32) * 0.02)
        self.w = w
        self.h = h

    def forward(self, x):
        B, H, W, C = x.shape
        x = torch.fft.rfft2(x, dim=(1, 2), norm='ortho')
        weight = torch.view_as_complex(self.complex_weight)
        x = x * weight
        x = torch.fft.irfft2(x, s=(H, W), dim=(1, 2), norm='ortho')
        return x

Compared to self-attention and spatial MLP, our Global Filter Layer is much more efficient to process high-resolution feature maps:

efficiency

Model Zoo

We provide our GFNet models pretrained on ImageNet:

name arch Params FLOPs [email protected] [email protected] url
GFNet-Ti gfnet-ti 7M 1.3G 74.6 92.2 Tsinghua Cloud / Google Drive
GFNet-XS gfnet-xs 16M 2.8G 78.6 94.2 Tsinghua Cloud / Google Drive
GFNet-S gfnet-s 25M 4.5G 80.0 94.9 Tsinghua Cloud / Google Drive
GFNet-B gfnet-b 43M 7.9G 80.7 95.1 Tsinghua Cloud / Google Drive
GFNet-H-Ti gfnet-h-ti 15M 2.0G 80.1 95.1 Tsinghua Cloud / Google Drive
GFNet-H-S gfnet-h-s 32M 4.5G 81.5 95.6 Tsinghua Cloud / Google Drive
GFNet-H-B gfnet-h-b 54M 8.4G 82.9 96.2 Tsinghua Cloud / Google Drive

Usage

Requirements

  • torch>=1.8.1
  • torchvision
  • timm

Data preparation: download and extract ImageNet images from http://image-net.org/. The directory structure should be

│ILSVRC2012/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained GFNet model on the ImageNet validation set with a single GPU, run:

python infer.py --data-path /path/to/ILSVRC2012/ --arch arch_name --path /path/to/model

Training

ImageNet

To train GFNet models on ImageNet from scratch, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet.py  --output_dir logs/gfnet-xs --arch gfnet-xs --batch-size 128 --data-path /path/to/ILSVRC2012/

To finetune a pre-trained model at higher resolution, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet.py  --output_dir logs/gfnet-xs-img384 --arch gfnet-xs --input-size 384 --batch-size 64 --data-path /path/to/ILSVRC2012/ --lr 5e-6 --weight-decay 1e-8 --min-lr 5e-6 --epochs 30 --finetune /path/to/model

Transfer Learning Datasets

To finetune a pre-trained model on a transfer learning dataset, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet_transfer.py  --output_dir logs/gfnet-xs-cars --arch gfnet-xs --batch-size 64 --data-set CARS --data-path /path/to/stanford_cars --epochs 1000 --dist-eval --lr 0.0001 --weight-decay 1e-4 --clip-grad 1 --warmup-epochs 5 --finetune /path/to/model 

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022