Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Overview

Taxonomizing local versus global structure in neural network loss landscapes

Introduction

This repository includes the programs to reproduce the results of the paper Taxonomizing local versus global structure in neural network loss landscapes. The code has been tested on Python 3.8.12 with PyTorch 1.10.1 and CUDA 10.2.

Block (Caricature of different types of loss landscapes). Globally well-connected versus globally poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes. Globally well-connected loss landscapes can be interpreted in terms of a global “rugged convexity”; and globally well-connected and locally flat loss landscapes can be further divided into two sub-cases, based on the similarity of trained models.

Block (2D phase plot). Partitioning the 2D load-like—temperature-like diagram into different phases of learning, varying batch size to change temperature and varying model width to change load. Models are trained with ResNet18 on CIFAR-10. All plots are on the same set of axes.

Usage

First, follow the steps below to install the necessary packages.

conda create -n loss_landscape python=3.8
source activate loss_landscape
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Training

Then, use the following command to generate the training scripts.

cd workspace/src
python example_experiment.py --metrics train

The training script can be found in the folder bash_scripts/width_lr_decay.

We recommend using some job scheduler to execute the training script. For example, use the following to generate an example slurm script for training.

python example_experiment.py --metrics train --generate-slurm-scripts

Evaluating metrics and generating phase plots

Use the following command to generate the scripts for different generalization metrics.

python example_experiment.py --metrics curve CKA hessian dist loss_acc

You can use our prior results, which are compressed and stored in workspace/checkpoint/results.tar.gz. Please decompress them using the command below.

cd workspace/checkpoint/
tar -xzvf results.tar.gz

After the generalization metrics are obtained, use the jupyter notebook Load_temperature_plots.ipynb in workspace/src/visualization/ to visualize the results.

Citation

We appreciate it if you would please cite the following paper if you found the repository useful for your work:

@inproceedings{yang2021taxonomizing,
  title={Taxonomizing local versus global structure in neural network loss landscapes},
  author={Yang, Yaoqing and Hodgkinson, Liam and Theisen, Ryan and Zou, Joe and Gonzalez, Joseph E and Ramchandran, Kannan and Mahoney, Michael W},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

License

MIT

Owner
Yaoqing Yang
Yaoqing Yang
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022