implementation for paper "ShelfNet for fast semantic segmentation"

Related tags

Deep LearningShelfNet
Overview

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation)

  • This repo contains implementation of ShelfNet-lightweight models for real-time models on Cityscapes.
  • For real-time tasks, we achieved 74.8% mIoU on Ctiyscapes dataset, with a speed of 59.2 FPS (61.7 FPS for BiSeNet at 74.7% on a GTX 1080Ti GPU).
  • For non real-time tasks, we achieved 79.0% mIoU on Cityscapes test set with ResNet34 backbone, suparssing other models (PSPNet and BiSeNet) with largers backbones with ResNet50 or Resnet 101 backbone.
  • For Non light-weight ShelfNet implementation, refer to another ShelfNet repo.
  • This branch is the result on Cityscapes experiment, for results on PASCAL, see branch pascal

This repo is based on two implementations Implementation 1 and Implementation 2. This implementation takes about 24h's training on 2 GTX 1080Ti GPU.

Results

Imagess
Cityscapes results

Link to results on Cityscapes test set

ShelfNet18-lw real-time: https://www.cityscapes-dataset.com/anonymous-results/?id=b2cc8f49fc3267c73e6bb686425016cb152c8bc34fc09ac207c81749f329dc8d
ShelfNet34-lw non real-time: https://www.cityscapes-dataset.com/anonymous-results/?id=c0a7c8a4b64a880a715632c6a28b116d239096b63b5d14f5042c8b3280a7169d

Data Preparation

Download fine labelled dataset from Cityscapes server, and decompress into ./data folder.
You might need to modify data path here and here

$ mkdir -p data
$ mv /path/to/leftImg8bit_trainvaltest.zip data
$ mv /path/to/gtFine_trainvaltest.zip data
$ cd data
$ unzip leftImg8bit_trainvaltest.zip
$ unzip gtFine_trainvaltest.zip

Two models and the pretrained weights

We provide two models, ShelfNet18 with 64 base channels for real-time semantic segmentation, and ShelfNet34 with 128 base channels for non-real-time semantic segmentation.
Pretrained weights for ShelfNet18 and ShelfNet34.

Requirements

PyTorch 1.1
python3
scikit-image
tqdm

How to run

Find the folder (cd ShelfNet18_realtime or cd ShelfNet34_non_realtime)

training

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py

evaluate on validation set (Create a folder called res, this folder is automatically created if you train the model. Put checkpoint in resfolder, and make sure the checkpoint name and dataset path match evaluate.py. Change checkpoint name to model_final.pthby default)

python evaluate.py

Running speed

test running speed of ShelfNet18-lw

python test_speed.py

You can modify the shape of input images to test running speed, by modifying here
You can test running speed of different models by modifying here
The running speed is an average of 100 single forward passes, therefore it's possible the speed varies. The code returns the mean running time by default.

Owner
Juntang Zhuang
Juntang Zhuang
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022