Implementation of Change-Based Exploration Transfer (C-BET)

Overview

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

This code was built on the RIDE repository.

Codebase and MiniGrid Installation

conda create -n cbet python=3.8.10
conda activate cbet
git clone [email protected]:sparisi/cbet.git
cd cbet
pip install -r requirements.txt

Habitat Installation (not Needed for MiniGrid Experiments)

  • Follow the official guide and do a full install with habitat_baselines.
  • Download and extract Replica scenes in the root folder of cbet

WARNING! The dataset is very large!

sudo apt-get install pigz
git clone https://github.com/facebookresearch/Replica-Dataset.git
cd Replica-Dataset
./download.sh replica-path

If the script does not work, manually unzip with cat replica_v1_0.tar.gz.part* | tar -xz

How to Run Experiments

  • Intrinsic-only pre-training: OMP_NUM_THREADS=1 python main.py --model cbet --env --no_reward --intrinsic_reward_coef=0.005

  • Extrinsic-only transfer with pre-trained model: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.0 --checkpoint=path/to/model.tar

  • Tabula-rasa training with summed intrinsic and extrinsic reward: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.005

See src/arguments.py for the full list of hyperparameters.

For MiniGrid, can be MiniGrid-DoorKey-8x8-v0, MiniGrid-Unlock-v0, ...
For Habitat, can be HabitatNav-apartment_0, HabitatNav-hotel_0, ...

You might also like...
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Generative Exploration and Exploitation - This is an improved version of GENE.
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

 TransCD: Scene Change Detection via Transformer-based Architecture
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

Comments
  • Bugfixes

    Bugfixes

    • Fixed a crash with Habitat environment in test script due to missing directory
    • Fixed an issue where count_reset_prob is referenced, but is not tracked in the ArgumentParser by removing it
    • Worked around a PyTorch memory bug (Ubuntu 21.10 + Driver Version: 495.29.05 + CUDA Version: 11.5 + torch version: 1.10.1+cu113)
      • Failed to allocate SHM despite plenty of available handles and many GiB of both system and GPU memory
      • Error message indicated an internal PyTorch bug, with instructions for filing a ticket
    opened by rothn 0
  • Problem about intrinsic reward at pre-training stage

    Problem about intrinsic reward at pre-training stage

    Hi,

    I think I meet a problem that my results of intrinsic reward is about 0.0014 after training of 4e7 frames and I just follow the instruction of github without changing any parameters, the environments I use is MiniGrid-KeyCorridorS3R3-v0,MiniGrid-MultiRoom-N4-S5-v0,MiniGrid-UnlockPickup-v0, which are mentioned in the paper as pre-training of many-to-many transfer. Therefore, I don't know whether there are something I missed. Hoping you can help me. Thx a lot.

    opened by dong845 2
  • Pretrained Model

    Pretrained Model

    One of my favorite components of the C-BET paper was the proposed paradigm shift from tabula-rasa exploration for each task to a system where new environments are explored with the context carried over from a pretrained model. I've found that a practical starting point for similar procedures on other large models (e.g., BERTs, ResNets) is to obtain a copy of the pre-trained model. I'd love to start working with C-BET as well!

    I'm very curious as to where I might be able to find the C-BET parameters from your paper. Looking forward to experimenting with this!

    opened by rothn 9
Releases(v1)
Owner
Simone Parisi
Simone Parisi
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022