End-to-End Object Detection with Fully Convolutional Network

Overview

End-to-End Object Detection with Fully Convolutional Network

GitHub

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

Experiments in the paper were conducted on the internal framework, thus we reimplement them on cvpods and report details as below.

Requirements

Get Started

  • install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods

# Or,
pip install -r requirements.txt
python3 setup.py build develop
  • prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
  • Train & Test
git clone https://github.com/Megvii-BaseDetection/DeFCN.git
cd DeFCN/playground/detection/coco/poto.res50.fpn.coco.800size.3x_ms  # for example

# Train
pods_train --num-gpus 8

# Test
pods_test --num-gpus 8 \
    MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
    OUTPUT_DIR /path/to/your/save_dir # optional

# Multi node training
## sudo apt install net-tools ifconfig
pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"

Results on COCO2017 val set

model assignment with NMS lr sched. mAP mAR download
FCOS one-to-many Yes 3x + ms 41.4 59.1 weight | log
FCOS baseline one-to-many Yes 3x + ms 40.9 58.4 weight | log
Anchor one-to-one No 3x + ms 37.1 60.5 weight | log
Center one-to-one No 3x + ms 35.2 61.0 weight | log
Foreground Loss one-to-one No 3x + ms 38.7 62.2 weight | log
POTO one-to-one No 3x + ms 39.2 61.7 weight | log
POTO + 3DMF one-to-one No 3x + ms 40.6 61.6 weight | log
POTO + 3DMF + Aux mixture* No 3x + ms 41.4 61.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • 2x + ms schedule is adopted in the paper, but we adopt 3x + ms schedule here to achieve higher performance.
  • It's normal to observe ~0.3AP noise in POTO.

Results on CrowdHuman val set

model assignment with NMS lr sched. AP50 mMR recall download
FCOS one-to-many Yes 30k iters 86.1 54.9 94.2 weight | log
ATSS one-to-many Yes 30k iters 87.2 49.7 94.0 weight | log
POTO one-to-one No 30k iters 88.5 52.2 96.3 weight | log
POTO + 3DMF one-to-one No 30k iters 88.8 51.0 96.6 weight | log
POTO + 3DMF + Aux mixture* No 30k iters 89.1 48.9 96.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • It's normal to observe ~0.3AP noise in POTO, and ~1.0mMR noise in all methods.

Ablations on COCO2017 val set

model assignment with NMS lr sched. mAP mAR note
POTO one-to-one No 6x + ms 40.0 61.9
POTO one-to-one No 9x + ms 40.2 62.3
POTO one-to-one No 3x + ms 39.2 61.1 replace Hungarian algorithm by argmax
POTO + 3DMF one-to-one No 3x + ms 40.9 62.0 remove GN in 3DMF
POTO + 3DMF + Aux mixture* No 3x + ms 41.5 61.5 remove GN in 3DMF

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • For one-to-one assignment, more training iters lead to higher performance.
  • The argmax (also known as top-1) operation is indeed the approximate solution of bipartite matching in dense prediction methods.
  • It seems harmless to remove GN in 3DMF, which also leads to higher inference speed.

Acknowledgement

This repo is developed based on cvpods. Please check cvpods for more details and features.

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wang2020end,
  title   =  {End-to-End Object Detection with Fully Convolutional Network},
  author  =  {Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning},
  journal =  {arXiv preprint arXiv:2012.03544},
  year    =  {2020}
}

Contributing to the project

Any pull requests or issues about the implementation are welcome. If you have any issue about the library (e.g. installation, environments), please refer to cvpods.

Owner
BaseDetection Team of Megvii
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022