End-to-End Object Detection with Fully Convolutional Network

Overview

End-to-End Object Detection with Fully Convolutional Network

GitHub

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

Experiments in the paper were conducted on the internal framework, thus we reimplement them on cvpods and report details as below.

Requirements

Get Started

  • install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods

# Or,
pip install -r requirements.txt
python3 setup.py build develop
  • prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
  • Train & Test
git clone https://github.com/Megvii-BaseDetection/DeFCN.git
cd DeFCN/playground/detection/coco/poto.res50.fpn.coco.800size.3x_ms  # for example

# Train
pods_train --num-gpus 8

# Test
pods_test --num-gpus 8 \
    MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
    OUTPUT_DIR /path/to/your/save_dir # optional

# Multi node training
## sudo apt install net-tools ifconfig
pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"

Results on COCO2017 val set

model assignment with NMS lr sched. mAP mAR download
FCOS one-to-many Yes 3x + ms 41.4 59.1 weight | log
FCOS baseline one-to-many Yes 3x + ms 40.9 58.4 weight | log
Anchor one-to-one No 3x + ms 37.1 60.5 weight | log
Center one-to-one No 3x + ms 35.2 61.0 weight | log
Foreground Loss one-to-one No 3x + ms 38.7 62.2 weight | log
POTO one-to-one No 3x + ms 39.2 61.7 weight | log
POTO + 3DMF one-to-one No 3x + ms 40.6 61.6 weight | log
POTO + 3DMF + Aux mixture* No 3x + ms 41.4 61.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • 2x + ms schedule is adopted in the paper, but we adopt 3x + ms schedule here to achieve higher performance.
  • It's normal to observe ~0.3AP noise in POTO.

Results on CrowdHuman val set

model assignment with NMS lr sched. AP50 mMR recall download
FCOS one-to-many Yes 30k iters 86.1 54.9 94.2 weight | log
ATSS one-to-many Yes 30k iters 87.2 49.7 94.0 weight | log
POTO one-to-one No 30k iters 88.5 52.2 96.3 weight | log
POTO + 3DMF one-to-one No 30k iters 88.8 51.0 96.6 weight | log
POTO + 3DMF + Aux mixture* No 30k iters 89.1 48.9 96.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • It's normal to observe ~0.3AP noise in POTO, and ~1.0mMR noise in all methods.

Ablations on COCO2017 val set

model assignment with NMS lr sched. mAP mAR note
POTO one-to-one No 6x + ms 40.0 61.9
POTO one-to-one No 9x + ms 40.2 62.3
POTO one-to-one No 3x + ms 39.2 61.1 replace Hungarian algorithm by argmax
POTO + 3DMF one-to-one No 3x + ms 40.9 62.0 remove GN in 3DMF
POTO + 3DMF + Aux mixture* No 3x + ms 41.5 61.5 remove GN in 3DMF

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • For one-to-one assignment, more training iters lead to higher performance.
  • The argmax (also known as top-1) operation is indeed the approximate solution of bipartite matching in dense prediction methods.
  • It seems harmless to remove GN in 3DMF, which also leads to higher inference speed.

Acknowledgement

This repo is developed based on cvpods. Please check cvpods for more details and features.

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wang2020end,
  title   =  {End-to-End Object Detection with Fully Convolutional Network},
  author  =  {Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning},
  journal =  {arXiv preprint arXiv:2012.03544},
  year    =  {2020}
}

Contributing to the project

Any pull requests or issues about the implementation are welcome. If you have any issue about the library (e.g. installation, environments), please refer to cvpods.

Owner
BaseDetection Team of Megvii
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022