Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Overview

Convolutional Neural Network to detect deforestation in the Amazon Rainforest

This project is part of my final work as an Aerospace Engineering student, and it comprises the development of a convolutional neural network (CNN) capable of classifying SAR images of deforestation in the Amazon Rainforest. The database used to train the CNN was created using the imagery avaiable in the European Space Agency (ESA) portal Copernicus.

Choosing the target area

The target area was the region inside the municipality of São Félix do Xingu, in the state of Pará, Brazil, and the sensing was made in July 5th, 2021. This city is particularly suitable for this project since it is the number one in cumulative forest degradation up to 2020, according to the National Institute of Space Research (INPE). Around 24% of São Félix's territory (more than 83 thousands square kilometers, that is more than the territory of Austria) has already been deforested.

Collecting de dataset

Synthetic Aperture Array (SAR) imaging is a method of remote sensing that operates beyond the visible light spectrum, using microwaves to form the image. The radiation in this wavelength is less susceptible to atmospheric interference than in the optical range. This is particularly fitting for monitoring the Amazon Rainforest, a region considerably umid and prone to cloud formation in a great part of the year. The downside is that, alternatively, a SAR image is less intuitive to be interpreted by a human eye than an optical image.

In order to remove the aspect of a televison tuned to a dead channel, it is necessary to pre-process the colleceted images. More details on this process will be avaiable in a near future (when my work will be published by the library of Universidade de Brasília). For the time being, it suffices to say that the original image turned into 27 new image as the one that follows:

Everyone of these new images were sliced in small chunks, resulting in about 1800 samples that comprised the dataset to be used to train the neural network that has yet to be developed.

Labelling the samples

As the above picture can demonstrate, the resulting faux-colors of the pre-processing step highlight the contrast between the areas where the forest is preserved and those where there are deforestation hotspots. Using high-resolution optical images of the same region as a complementary guide, every sample was manually labeled as one of these four categories:

  • totally preserved, when there is no trace of deforestation;
  • partially preserved, when there is some trace of deforestation, but the preserved prevail;
  • partially deforested, when the deforested area is the prevailing feature;
  • totally deforested, when there is no trace of preserved area.

Later in the CNN trainin step it will be clearer that this categorization were not optimal, to say the least.

Developing de convolutional neural network

CNN is a deep neural network specifically developed to be applied in the recognition of visual pattern. This architecture is made by two kinds of hidden layers:

  • a convolutional layer (as the name goes), that pass a small window (the filter) through the input image, making a convolutional operation (dot product) between the filter and every chunck of pixels comprised in the perception window;
  • a pooling layer, that gets as an input the output of the convolutional layer and makes a dimensional reduction operation, normally a mean operation with a given number (2x2, 3x3, depending on the desired reduction) of inputs.

These operations are well suited in finding patterns in a picture with a good amount of generalization in order to prevent overfitting. The CNN developed for this work can be seen in the following picture:

Training, testing and results

Using four labels to pre-classify the dataset used to train de CNN ended up to be a bad idea. CNN architecture is good to find commom patterns in a set of pictures, as long as these patterns are well generalized. Trying to differentiate between 'partially preserved' and 'partially deforested' proved to be unfruitful, with a low accuracy (75%) in small epochs and an increasing overfitting with more epochs.

Thus, a merge between these two labels was made, with considerably better results. Bearing this in mind, this new merged label was once again merged with the label 'totally deforested', creating a binary scenario ('preserved', 'not preserved') with even better results (accuracy of about 90%). These results are shown in the following graphics:

You might also like...
Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer vision can be used to identify cognates known to exist, and perhaps lead linguists to evidence of unknown cognates.

Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

Releases(v1.0.0)
  • v1.0.0(Feb 6, 2022)

    What's Changed

    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/1
    • Add files via upload by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/2
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/3
    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/4
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/5

    New Contributors

    • @diogosens made their first contribution in https://github.com/diogosens/cnn_sar_image_classification/pull/1

    Full Changelog: https://github.com/diogosens/cnn_sar_image_classification/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
LBK 26 Dec 28, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022