Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

Overview

TDY-CNN for Text-Independent Speaker Verification

Official implementation of

  • Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
    by Seong-Hu Kim, Hyeonuk Nam, Yong-Hwa Park @ Human Lab, Mechanical Engineering Department, KAIST
    arXiv

Accepted paper in ICASSP 2022.

This code was written mainly with reference to VoxCeleb_trainer of paper 'In defence of metric learning for speaker recognition'.

Temporal Dynamic Convolutional Neural Network (TDY-CNN)

TDY-CNN efficiently applies adaptive convolution depending on time bins by changing the computation order as follows:

where x and y are input and output of TDY-CNN module which depends on frequency feature f and time feature t in time-frequency domain data. k-th basis kernel is convoluted with input and k-th bias is added. The results are aggregated using the attention weights which depends on time bins. K is the number of basis kernels, and σ is an activation function ReLU. The attention weight has a value between 0 and 1, and the sum of all basis kernels on a single time bin is 1 as the weights are processed by softmax.

Requirements and versions used

Python version of 3.7.10 is used with following libraries

  • pytorch == 1.8.1
  • pytorchaudio == 0.8.1
  • numpy == 1.19.2
  • scipy == 1.5.3
  • scikit-learn == 0.23.2

Dataset

We used VoxCeleb1 & 2 dataset in this paper. You can download the dataset by reffering to VoxCeleb1 and VoxCeleb1.

Training

You can train and save model in exps folder by running:

python trainSpeakerNet.py --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/TDY_CNN_ResNet34 --nPerSpeaker 2 --batch_size 400

This implementation also provides accelerating training with distributed training and mixed precision training.

  • Use --distributed flag to enable distributed training and --mixedprec flag to enable mixed precision training.
    • GPU indices should be set before training : os.environ['CUDA_VISIBLE_DEVICES'] ='0,1,2,3' in trainSpeakernet.py.

Results:

Network #Parm EER (%) C_det (%)
TDY-VGG-M 71.2M 3.04 0.237
TDY-ResNet-34(×0.25) 13.3M 1.58 0.116
TDY-ResNet-34(×0.5) 51.9M 1.48 0.118

  • This result is low-dimensional t-SNE projection of frame-level speaker embed-dings of MHRM0 and FDAS1 using (a) baseline model ResNet-34(×0.25) and (b) TDY-ResNet-34(×0.25). Left column represents embeddings for different speakers, and right column represents em-beddings for different phoneme classes.

  • Embeddings by TDY-ResNet-34(×0.25) are closely gathered regardless of phoneme groups. It shows that the temporal dynamic model extracts consistent speaker information regardless of phonemes.

Pretrained models

There are pretrained models in folder pretrained_model.

For example, you can check 1.4786 of EER by running following script using TDY-ResNet-34(×0.5).

python trainSpeakerNet.py --eval --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/test --eval_frames 400 --initial_model pretrained_model/pretrained_TDy_ResNet34_half.model

Citation

@article{kim2021tdycnn,
  title={Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis},
  author={Kim, Seong-Hu and Nam, Hyeonuk and Park, Yong-Hwa},
  journal={arXiv preprint arXiv:2110.03213},
  year={2021}
}

Please contact Seong-Hu Kim at [email protected] for any query.

Owner
Seong-Hu Kim
Seong-Hu Kim
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022