Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Related tags

Deep LearningVisualDS
Overview

Distant Supervision for Scene Graph Generation

Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Introduction

The paper applies distant supervision to visual relation detection. The intuition of distant supervision is that possible predicates between entity pairs are highly dependent on the entity types. For example, there might be ride on, feed between human and horse in images, but it is less likely to be covering. Thus, we apply this correlation to take advantage of unlabeled data. Given the knowledge base containing possible combinations between entity types and predicates, our framework enables distantly supervised training without using any human-annotated relation data, and semi-supervised training that incorporates both human-labeled data and distantly labeled data. To build the knowledge base, we parse all possible (subject, predicate, object) triplets from Conceptual Caption dataset, resulting in a knowledge base containing 1.9M distinct relational triples.

Code

Thanks to the elegant code from Scene-Graph-Benchmark.pytorch. This project is built on their framework. There are also some differences from their settings. We show the differences in a later section.

The Illustration of Distant Supervision

alt text

Installation

Check INSTALL.md for installation instructions.

Dataset

Check DATASET.md for instructions of dataset preprocessing.

Metrics

Our metrics are directly adapted from Scene-Graph-Benchmark.pytorch.

Object Detector

Download Pre-trained Detector

In generally SGG tasks, the detector is pre-trained on the object bounding box annotations on training set. We directly use the pre-trained Faster R-CNN provided by Scene-Graph-Benchmark.pytorch, because our 20 category setting and their 50 category setting have the same training set.

After you download the Faster R-CNN model, please extract all the files to the directory /home/username/checkpoints/pretrained_faster_rcnn. To train your own Faster R-CNN model, please follow the next section.

The above pre-trained Faster R-CNN model achives 38.52/26.35/28.14 mAp on VG train/val/test set respectively.

Pre-train Your Own Detector

In this work, we do not modify the Faster R-CNN part. The training process can be referred to the origin code.

EM Algorithm based Training

All commands of training are saved in the directory cmds/. The directory of cmds looks like:

cmds/  
├── 20 
│   └── motif
│       ├── predcls
│       │   ├── ds \\ distant supervision which is weakly supervised training
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   ├── em_M_step2.sh
│       │   │   ├── em_M_step1_wclip.sh
│       │   │   ├── em_E_step2_wclip.sh
│       │   │   └── em_M_step2_wclip.sh
│       │   ├── semi \\ semi-supervised training 
│       │   │   ├── em_E_step1.sh
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   └── em_M_step2.sh
│       │   └── sup
│       │       ├── train.sh
│       │       └── val.sh
│       │
│       ├── sgcls
│       │   ...
│       │
│       ├── sgdet
│       │   ...

Generally, we use an EM algorithm based training, which means the model is trained iteratively. In E-step, we estimate the predicate label distribution between entity pairs. In M-step, we optimize the model with estimated predicate label distribution. For example, the em_E_step1 means the initialization of predicate label distribution, and in em_M_step1 the model will be optimized on the label estimation.

All checkpoints can be downloaded from MODEL_ZOO.md.

Preparation

Before running the code, you need to specify the current path as environment variable SG and the experiments' root directory as EXP.

# specify current directory as SG, e.g.:
export SG=~/VisualDS
# specify experiment directory, e.g.:
export EXP=~/exps

Weakly Supervised Training

Weakly supervised training can be done with only knowledge base or can also use external semantic signals to train a better model. As for the external semantic signals, we use currently popular CLIP to initialize the probability of possible predicates between entity pairs.

  1. w/o CLIP training for Predcls:
# no need for em_E_step1
sh cmds/20/motif/predcls/ds/em_M_step1.sh
sh cmds/20/motif/predcls/ds/em_E_step2.sh
sh cmds/20/motif/predcls/ds/em_M_step2.sh
  1. with CLIP training for Predcls:

Before training, please ensure datasets/vg/20/cc_clip_logits.pk is downloaded.

# the em_E_step1 is conducted by CLIP
sh cmds/20/motif/predcls/ds/em_M_step1_wclip.sh
sh cmds/20/motif/predcls/ds/em_E_step2_wclip.sh
sh cmds/20/motif/predcls/ds/em_M_step2_wclip.sh
  1. training for Sgcls and Sgdet:

E_step results of Predcls are directly used for Sgcls and Sgdet. Thus, there is no em_E_step.sh for Sgcls and Sgdet.

Semi-Supervised Training

In semi-supervised training, we use supervised model trained with labeled data to estimate predicate labels for entity pairs. So before conduct semi-supervised training, we should conduct a normal supervised training on Predcls task first:

sh cmds/20/motif/predcls/sup/train.sh

Or just download the trained model here, and put it into $EXP/20/predcls/sup/sup.

Noted that, for three tasks Predcls, Sgcls, Sgdet, we all use supervised model of Predcls task to initialize predicate label distributions. After the preparation, we can run:

sh cmds/20/motif/predcls/semi/em_E_step1.sh
sh cmds/20/motif/predcls/semi/em_M_step1.sh
sh cmds/20/motif/predcls/semi/em_E_step2.sh
sh cmds/20/motif/predcls/semi/em_M_step2.sh

Difference from Scene-Graph-Benchmark.pytorch

  1. Fix a bug in evaluation.

    We found that in previous evaluation, there are sometimes duplicated triplets in images, e.g. (1-man, ride, 2-horse)*3. We fix this small bug and use only unique triplets. By fixing the bug, the performance of the model will decrease somewhat. For example, the [email protected] of predcls task will decrease about 1~3 points.

  2. We conduct experiments on 20 categories predicate setting rather than 50 categories.

  3. In evaluation, weakly supervised trained model uses logits rather than softmax normalized scores for relation triplets ranking.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023