The easiest tool for extracting radiomics features and training ML models on them.

Overview


ClassyRadiomics

License CI Build codecov

Simple pipeline for experimenting with radiomics features

Installation

git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git
cd classrad
pip install -e .

Example - Hydronephrosis detection from CT images:

Extract radiomics features and save them to CSV table

df = pd.read_csv(table_dir / "paths.csv")
extractor = FeatureExtractor(
    df=df,
    out_path=(table_dir / "features.csv"),
    image_col="img_path",
    mask_col="seg_path",
    verbose=True,
)
extractor.extract_features()

Create a dataset from the features table

feature_df = pd.read_csv(table_dir / "features.csv")
data = Dataset(
    dataframe=feature_df,
    features=feature_cols,
    target=label_col="Hydronephrosis",
    task_name="Hydronephrosis detection"
)
data.cross_validation_split_test_from_column(
    column_name="cohort", test_value="control"
)

Select classifiers to compare

classifier_names = [
    "Gaussian Process Classifier",
    "Logistic Regression",
    "SVM",
    "Random Forest",
    "XGBoost",
]
classifiers = [MLClassifier(name) for name in classifier_names]

Create an evaluator to train and evaluate selected classifiers

evaluator = Evaluator(dataset=data, models=classifiers)
evaluator.evaluate_cross_validation()
evaluator.boxplot_by_class()
evaluator.plot_all_cross_validation()
evaluator.plot_test()
Comments
  • Preprocessing features fails during machine learning

    Preprocessing features fails during machine learning

    Describe the bug

    Trying to use Machine Learning in the self-hosted webapp, as well as in example_WORC.ipynb fails.

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    from autorad.utils.preprocessing import get_paths_with_separate_folder_per_case
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")
    feature_df = extractor.run()
    
    feature_df.head()
    
    label_df = pd.read_csv(data_dir / "labels.csv")
    label_df.sample(5)
    
    from autorad.data.dataset import FeatureDataset
    
    merged_feature_df = feature_df.merge(label_df, left_on="ID",
        right_on="patient_ID", how="left")
    feature_dataset = FeatureDataset(
        merged_feature_df,
        target="diagnosis",
        ID_colname="ID"
    )
    
    splits_path = result_dir / "splits.json"
    feature_dataset.split(method="train_val_test", save_path=splits_path)
    
    from autorad.models.classifier import MLClassifier
    from autorad.training.trainer import Trainer
    
    models = MLClassifier.initialize_default_sklearn_models()
    print(models)
    
    trainer = Trainer(
        dataset=feature_dataset,
        models=models,
        result_dir=result_dir,
        experiment_name="Fibromatosis_vs_sarcoma_classification",
    )
    trainer.run_auto_preprocessing(
            selection_methods=["boruta"],
            oversampling=False,
            )
    
    

    Expected Results

    Initialising the trainer and running preprocessing on the features

    Actual Results

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [15], in <cell line: 7>()
          1 trainer = Trainer(
          2     dataset=feature_dataset,
          3     models=models,
          4     result_dir=result_dir,
          5     experiment_name="Fibromatosis_vs_sarcoma_classification",
          6 )
    ----> 7 trainer.run_auto_preprocessing(
          8         selection_methods=["boruta"],
          9         oversampling=False,
         10         )
    
    File ~/AutoRadiomics/autorad/training/trainer.py:78, in Trainer.run_auto_preprocessing(self, oversampling, selection_methods)
         70 preprocessor = Preprocessor(
         71     normalize=True,
         72     feature_selection_method=selection_method,
         73     oversampling_method=oversampling_method,
         74 )
         75 try:
         76     preprocessed[selection_method][
         77         oversampling_method
    ---> 78     ] = preprocessor.fit_transform(self.dataset.data)
         79 except AssertionError:
         80     log.error(
         81         f"Preprocessing with {selection_method} and {oversampling_method} failed."
         82     )
    
    File ~/AutoRadiomics/autorad/preprocessing/preprocessor.py:66, in Preprocessor.fit_transform(self, data)
         64 result_y = {}
         65 all_features = X.train.columns.tolist()
    ---> 66 X_train_trans, y_train_trans = self.pipeline.fit_transform(
         67     X.train, y.train
         68 )
         69 self.selected_features = self.pipeline["select"].selected_features(
         70     column_names=all_features
         71 )
         72 result_X["train"] = pd.DataFrame(
         73     X_train_trans, columns=self.selected_features
         74 )
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/pipeline.py:434, in Pipeline.fit_transform(self, X, y, **fit_params)
        432 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
        433 if hasattr(last_step, "fit_transform"):
    --> 434     return last_step.fit_transform(Xt, y, **fit_params_last_step)
        435 else:
        436     return last_step.fit(Xt, y, **fit_params_last_step).transform(Xt)
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:47, in CoreSelector.fit_transform(self, X, y)
         44 def fit_transform(
         45     self, X: np.ndarray, y: np.ndarray
         46 ) -> tuple[np.ndarray, np.ndarray]:
    ---> 47     self.fit(X, y)
         48     return X[:, self.selected_columns], y
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:124, in BorutaSelector.fit(self, X, y, verbose)
        122 with warnings.catch_warnings():
        123     warnings.simplefilter("ignore")
    --> 124     model.fit(X, y)
        125 self.selected_columns = np.where(model.support_)[0].tolist()
        126 if not self.selected_columns:
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:201, in BorutaPy.fit(self, X, y)
        188 def fit(self, X, y):
        189     """
        190     Fits the Boruta feature selection with the provided estimator.
        191 
       (...)
        198         The target values.
        199     """
    --> 201     return self._fit(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:251, in BorutaPy._fit(self, X, y)
        249 def _fit(self, X, y):
        250     # check input params
    --> 251     self._check_params(X, y)
        252     self.random_state = check_random_state(self.random_state)
        253     # setup variables for Boruta
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:517, in BorutaPy._check_params(self, X, y)
        513 """
        514 Check hyperparameters as well as X and y before proceeding with fit.
        515 """
        516 # check X and y are consistent len, X is Array and y is column
    --> 517 X, y = check_X_y(X, y)
        518 if self.perc <= 0 or self.perc > 100:
        519     raise ValueError('The percentile should be between 0 and 100.')
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:964, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
        961 if y is None:
        962     raise ValueError("y cannot be None")
    --> 964 X = check_array(
        965     X,
        966     accept_sparse=accept_sparse,
        967     accept_large_sparse=accept_large_sparse,
        968     dtype=dtype,
        969     order=order,
        970     copy=copy,
        971     force_all_finite=force_all_finite,
        972     ensure_2d=ensure_2d,
        973     allow_nd=allow_nd,
        974     ensure_min_samples=ensure_min_samples,
        975     ensure_min_features=ensure_min_features,
        976     estimator=estimator,
        977 )
        979 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric)
        981 check_consistent_length(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:746, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
        744         array = array.astype(dtype, casting="unsafe", copy=False)
        745     else:
    --> 746         array = np.asarray(array, order=order, dtype=dtype)
        747 except ComplexWarning as complex_warning:
        748     raise ValueError(
        749         "Complex data not supported\n{}\n".format(array)
        750     ) from complex_warning
    
    ValueError: could not broadcast input array from shape (60,1015) into shape (60,)
    
    opened by wagon-master 3
  • BUG: Time and memory inefficient concating in pandas on every case.

    BUG: Time and memory inefficient concating in pandas on every case.

    In the feature extraction, we concat a pd.DataFrame for every case. AFAIK this construction of a pd.DataFrame leads to a new memory allocation (and copying) every time, which is highly memory inefficient. Especially, when parallelized on many CPUs, combined with the already memory intensive forking in joblib this can lead to OOM-Events (and is slow of course). Wouldn't it be more convenient to return only the feature set, that is currently processed. https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L109-L115 These are subsequently collected in results anyways: https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L135-L144

    opened by laqua-stack 2
  • Feature/add inference mlflow

    Feature/add inference mlflow

    Major changes:

    • fixed training with autologging of training parameters, preprocessor and classifier in MLFlow
    • webapp: added Predict subpage for inference on a single case, giving out class probability and Shap explanation
    • webapp: moved all steps into subpages
    • webapp: added Getting started in the landing page

    Fixes:

    • webapp: fixed extraction params discarding Feature Names selected from Feature Classes
    opened by pwoznicki 1
  • example_WORC.ipynb not being up to date with the repository

    example_WORC.ipynb not being up to date with the repository

    Describe the bug

    In example_WORC.ipynb there are function calls that do not work due to code in the repository being changed while the example_WORC.ipynb code wasn't updated to reflect those changes

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    
    
    from autorad.data.utils import get_paths_with_separate_folder_per_case  # 1
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") # 2
    feature_df = extractor.run()
    
    

    Expected Results

    1: Importing the function get_paths_with_separate_folder_per_case

    2: Using default_MR.yaml as value for extraction_params

    Actual Results

    1:

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    Input In [7], in <cell line: 1>()
    ----> 1 from autorad.data.utils import get_paths_with_separate_folder_per_case
          3 # create a table with all the paths
          4 paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    
    ModuleNotFoundError: No module named 'autorad.data.utils'
    

    2:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [18], in <cell line: 1>()
    ----> 1 extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml")
          2 feature_df = extractor.run()
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:41, in FeatureExtractor.__init__(self, dataset, feature_set, extraction_params, n_jobs)
         39 self.dataset = dataset
         40 self.feature_set = feature_set
    ---> 41 self.extraction_params = self._get_extraction_param_path(
         42     extraction_params
         43 )
         44 log.info(f"Using extraction params from {self.extraction_params}")
         45 self.n_jobs = set_n_jobs(n_jobs)
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:55, in FeatureExtractor._get_extraction_param_path(self, extraction_params)
         53     result = default_extraction_param_dir / extraction_params
         54 else:
    ---> 55     raise ValueError(
         56         f"Extraction parameter file {extraction_params} not found."
         57     )
         58 return result
    
    ValueError: Extraction parameter file default_MR.yaml not found.
    

    Fix

    1: change from autorad.data.utils to from autorad.utils.preprocessing 2: change extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") to extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")

    opened by wagon-master 1
  • Bugfix/refactor

    Bugfix/refactor

    New features:

    • log feature dataset and splits in MLFlow
    • update docs & add getting-started

    Fixes:

    • fix evaluation in the web app
    • fix docs build in readthedocss
    opened by pwoznicki 0
  • Support various readers (Nibabel, ITK)

    Support various readers (Nibabel, ITK)

    Currently we use Nibabel for loading images. It works only for Nifti images, but a user may want to load a DICOM image, without converting it to Nifti.

    Consider using MONAI LoadImage() function that provides a common interface for loading both Nifti and DICOM images.

    enhancement 
    opened by pwoznicki 0
Releases(v0.2.2)
  • v0.2.2(Jul 30, 2022)

Owner
Piotr Woźnicki
Recently graduated medical doctor, working on medical image analysis.
Piotr Woźnicki
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022