Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

Overview

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

[Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [Colab]
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending

Overview

source destination mask composited blended

The author's implementation of GP-GAN, the high-resolution image blending algorithm described in:
"GP-GAN: Towards Realistic High-Resolution Image Blending"
Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang

Given a mask, our algorithm can blend the source image and the destination image, generating a high-resolution and realsitic blended image. Our algorithm is based on deep generative models Wasserstein GAN.

Contact: Hui-Kai Wu ([email protected])

Citation

@article{wu2017gp,
  title   = {GP-GAN: Towards Realistic High-Resolution Image Blending},
  author  = {Wu, Huikai and Zheng, Shuai and Zhang, Junge and Huang, Kaiqi},
  journal = {ACMMM},
  year    = {2019}
}

Getting started

  • The code is tested with python==3.5 and chainer==6.3.0 on Ubuntu 16.04 LTS.

  • Download the code from GitHub:

    git clone https://github.com/wuhuikai/GP-GAN.git
    cd GP-GAN
  • Install the requirements:

    pip install -r requirements/test/requirements.txt
  • Download the pretrained model blending_gan.npz or unsupervised_blending_gan.npz from Google Drive, and then put them in the folder models.

  • Run the script for blending_gan.npz:

    python run_gp_gan.py --src_image images/test_images/src.jpg --dst_image images/test_images/dst.jpg --mask_image images/test_images/mask.png --blended_image images/test_images/result.png

    Or run the script for unsupervised_blending_gan.npz:

    python run_gp_gan.py --src_image images/test_images/src.jpg --dst_image images/test_images/dst.jpg --mask_image images/test_images/mask.png --blended_image images/test_images/result.png --supervised False
  • Type python run_gp_gan.py --help for a complete list of the arguments.

Train GP-GAN step by step

Train Blending GAN

  • Download Transient Attributes Dataset here.

  • Crop the images in each subfolder:

    python crop_aligned_images.py --data_root [Path for imageAlignedLD in Transient Attributes Dataset]
  • Train Blending GAN:

    python train_blending_gan.py --data_root [Path for cropped aligned images of Transient Attributes Dataset]
  • Training Curve

  • Visual Result

    Training Set Validation Set

Training Unsupervised Blending GAN

  • Requirements

    pip install git+git://github.com/mila-udem/[email protected]
  • Download the hdf5 dataset of outdoor natural images: ourdoor_64.hdf5 (1.4G), which contains 150K landscape images from MIT Places dataset.

  • Train unsupervised Blending GAN:

    python train_wasserstein_gan.py --data_root [Path for outdoor_64.hdf5]
  • Training Curve

  • Samples after training

Visual results

Mask Copy-and-Paste Modified-Poisson Multi-splines Supervised GP-GAN Unsupervised GP-GAN
Owner
Wu Huikai
Wu Huikai
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022