Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Related tags

Deep Learningtutorial
Overview

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Jupyter Book Badge

About the book

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Conference, Nov 8-12, 2021, in an online format. The ISMIR conference is the world’s leading research forum on processing, searching, organising and accessing music-related data.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking access to the information without personal contact. These are tremendous obstacles when new researchers want to dive into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data. Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expensive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some important procedures and considerations for real-world applications are rarely discussed as research topics. In this book, based on the various industry experiences of the authors, we try our best to raise the awareness of these questions and provide answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical Genre.

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master's thesis titled "Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative models for music creation. She is also a songwriter and music producer, and explores the design and use of machine learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source projects such as Kapre, librosa, and torchaudio. He also writes some music.

Citing this book

@book{musicclassification:book,
	Author = {Minz Won, Janne Spijkervet, and Keunwoo Choi},
	Month = Nov.,
	Publisher = {https://music-classification.github.io/tutorial},
	Title = {Music Classification: Beyond Supervised Learning, Towards Real-world Applications},
	Year = 2021,
	Url = {https://music-classification.github.io/tutorial}
}
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022