PyTorch framework for Deep Learning research and development.

Overview

Catalyst logo

Accelerated DL & RL

Build Status CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentation and code/ideas reusing. Being able to research/develop something new, rather than write another regular train loop.
Break the cycle - use the Catalyst!

Project manifest. Part of PyTorch Ecosystem. Part of Catalyst Ecosystem:

  • Alchemy - Experiments logging & visualization
  • Catalyst - Accelerated Deep Learning Research and Development
  • Reaction - Convenient Deep Learning models serving

Catalyst at AI Landscape.


Catalyst.Segmentation Build Status Github contributors

Note: this repo uses advanced Catalyst Config API and could be a bit out-of-day right now. Use Catalyst's minimal examples section for a starting point and up-to-day use cases, please.

You will learn how to build image segmentation pipeline with transfer learning using the Catalyst framework.

Goals

  1. Install requirements
  2. Prepare data
  3. Run: raw data → production-ready model
  4. Get results
  5. Customize own pipeline

1. Install requirements

Using local environment:

pip install -r requirements/requirements.txt

Using docker:

This creates a build catalyst-segmentation with the necessary libraries:

make docker-build

2. Get Dataset

Try on open datasets

You can use one of the open datasets

/dev/null mv isbi_cleared_191107 ./data/origin elif [[ "$DATASET" == "voc2012" ]]; then # semantic segmentation # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar tar -xf VOCtrainval_11-May-2012.tar &>/dev/null mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_ mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_ fi ">
export DATASET="isbi"

rm -rf data/
mkdir -p data

if [[ "$DATASET" == "isbi" ]]; then
    # binary segmentation
    # http://brainiac2.mit.edu/isbi_challenge/
    download-gdrive 1uyPb9WI0t2qMKIqOjFKMv1EtfQ5FAVEI isbi_cleared_191107.tar.gz
    tar -xf isbi_cleared_191107.tar.gz &>/dev/null
    mv isbi_cleared_191107 ./data/origin
elif [[ "$DATASET" == "voc2012" ]]; then
    # semantic segmentation
    # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    tar -xf VOCtrainval_11-May-2012.tar &>/dev/null
    mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_
    mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_
fi

Use your own dataset

Prepare your dataset

Data structure

Make sure, that final folder with data has the required structure:

/path/to/your_dataset/
        images/
            image_1
            image_2
            ...
            image_N
        raw_masks/
            mask_1
            mask_2
            ...
            mask_N

Data location

  • The easiest way is to move your data:

    mv /path/to/your_dataset/* /catalyst.segmentation/data/origin

    In that way you can run pipeline with default settings.

  • If you prefer leave data in /path/to/your_dataset/

    • In local environment:

      • Link directory
        ln -s /path/to/your_dataset $(pwd)/data/origin
      • Or just set path to your dataset DATADIR=/path/to/your_dataset when you start the pipeline.
    • Using docker

      You need to set:

         -v /path/to/your_dataset:/data \ #instead default  $(pwd)/data/origin:/data

      in the script below to start the pipeline.

3. Segmentation pipeline

Fast&Furious: raw data → production-ready model

The pipeline will automatically guide you from raw data to the production-ready model.

We will initialize Unet model with a pre-trained ResNet-18 encoder. During current pipeline model will be trained sequentially in two stages.

Binary segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/binary.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-binary-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/binary.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-binary-segmentation-pipeline.sh

Semantic segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/semantic.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-semantic-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/semantic.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-semantic-segmentation-pipeline.sh

The pipeline is running and you don’t have to do anything else, it remains to wait for the best model!

Visualizations

You can use W&B account for visualisation right after pip install wandb:

wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results

Tensorboard also can be used for visualisation:

tensorboard --logdir=/catalyst.segmentation/logs

4. Results

All results of all experiments can be found locally in WORKDIR, by default catalyst.segmentation/logs. Results of experiment, for instance catalyst.segmentation/logs/logdir-191107-094627-2f31d790, contain:

checkpoints

  • The directory contains all checkpoints: best, last, also of all stages.
  • best.pth and last.pht can be also found in the corresponding experiment in your W&B account.

configs

  • The directory contains experiment`s configs for reproducibility.

logs

  • The directory contains all logs of experiment.
  • Metrics also logs can be displayed in the corresponding experiment in your W&B account.

code

  • The directory contains code on which calculations were performed. This is necessary for complete reproducibility.

5. Customize own pipeline

For your future experiments framework provides powerful configs allow to optimize configuration of the whole pipeline of segmentation in a controlled and reproducible way.

Configure your experiments

  • Common settings of stages of training and model parameters can be found in catalyst.segmentation/configs/_common.yml.

    • model_params: detailed configuration of models, including:
      • model, for instance ResnetUnet
      • detailed architecture description
      • using pretrained model
    • stages: you can configure training or inference in several stages with different hyperparameters. In our example:
      • optimizer params
      • first learn the head(s), then train the whole network
  • The CONFIG_TEMPLATE with other experiment`s hyperparameters, such as data_params and is here: catalyst.segmentation/configs/templates/binary.yml. The config allows you to define:

    • data_params: path, batch size, num of workers and so on
    • callbacks_params: Callbacks are used to execute code during training, for example, to get metrics or save checkpoints. Catalyst provide wide variety of helpful callbacks also you can use custom.

You can find much more options for configuring experiments in catalyst documentation.

Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022