PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

Overview

ContextNet

ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules.
Also, ContextNet supports three size models: small, medium, and large. ContextNet uses the global parameter alpha to control the scaling of the model by changing the number of channels in the convolution filter.

This repository contains only model code, but you can train with ContextNet at openspeech.

Model Architecuture

  • Configuration of the ContextNet encoder

image
If you choose the model size among small, medium, and large, the number of channels in the convolution filter is set using the global parameter alpha. If the stride of a convolution block is 2, its last conv layer has a stride of two while the rest of the conv layers has a stride of one.

  • A convolution block architecuture

image

ContextNet has 23 convolution blocks C0, .... ,C22. All convolution blocks have five layers of convolution except C0 and C22 which only have one layer of convolution each. A skip connection with projection is applied on the output of the squeeze-and-excitation(SE) block.

  • 1D Squeeze-and-excitation(SE) module

image

Average pooling is applied to condense the convolution result into a 1D vector and then followed two fully connected (FC) layers with activation functions. The output goes through a Sigmoid function to be mapped to (0, 1) and then tiled and applied on the convolution output using pointwise multiplications.

Please check the paper for more details.

Installation

pip install -e .   

Usage

from contextnet.model import ContextNet
import torch

BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE, NUM_VOCABS = 3, 500, 80, 10

cuda = torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')

model = ContextNet(
    model_size='large',
    num_vocabs=10,
).to(device)

inputs = torch.FloatTensor(BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE).to(device)
input_lengths = torch.IntTensor([500, 450, 350])
targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                            [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                            [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
target_lengths = torch.LongTensor([9, 8, 7])

# Forward propagate
outputs = model(inputs, input_lengths, targets, target_lengths)

# Recognize input speech
outputs = model.recognize(inputs, input_lengths)

Reference

License

Copyright 2021 Sangchun Ha.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Sangchun Ha
"Done is better than perfect"
Sangchun Ha
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022