Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

Overview

Awesome Graph Classification

Awesome PRs Welcome License repo sizebenedekrozemberczki

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.

Relevant graph classification benchmark datasets are available [here].

Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.


Contents

  1. Matrix Factorization
  2. Spectral and Statistical Fingerprints
  3. Deep Learning
  4. Graph Kernels

License

Comments
  • Graph classification method from ICDM '19

    Graph classification method from ICDM '19

    Hi, thanks for maintaining such a comprehensive list of methods for graph-level machine learning. I am an author of the ICDM 2019 paper "Distribution of Node Embeddings as Multiresolution Features for Graphs" and was wondering if it could be included on this list?
    Overview: Derives a randomized feature map for a graph based on the distribution of its node embeddings in vector space. As the proposed technique is an explicit feature map, it probably fits in the section on "spectral and statistical fingerprints", but its theoretical underpinnings come from the graph kernel literature and so it might fit in that section instead. Won best student paper at ICDM 2019.
    Paper: [https://ieeexplore.ieee.org/document/8970922] Code: [https://github.com/GemsLab/RGM]

    opened by markheimann 3
  • Another graph paper

    Another graph paper

    You can also add to the list "Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction" from NeurIPS18.

    It's a novel graph architecture for mapping images to scene graphs using a permutation invariant property, which achieves a new state-of-the-art results on Visual Genome dataset.

    paper: https://arxiv.org/abs/1802.05451 code: https://github.com/shikorab/SceneGraph

    opened by roeiherz 3
  • Please add KDD 2019 paper, data, code

    Please add KDD 2019 paper, data, code

    Hi!

    Thank you for this awesome repository!

    Could you please add the following paper, code, and data link to the repository: Paper: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks Authors: Srijan Kumar, Xikun Zhang, Jure Leskovec Venue: ACM SIGKDD 2019 (Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining) Project page: http://snap.stanford.edu/jodie/ Code: https://github.com/srijankr/jodie/ All datasets: http://snap.stanford.edu/jodie/

    Many thanks, Srijan

    opened by srijankr 3
  • Graph classification based on topological features

    Graph classification based on topological features

    Hi there,

    please add our paper “A Persistent Weisfeiler–Lehman Procedure for Graph Classification” as well to this repository:

    Paper: http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf Code: https://github.com/BorgwardtLab/P-WL

    Best, Bastian

    opened by Pseudomanifold 2
  • Updates of the library py-graph

    Updates of the library py-graph

    Hi, I am the author of the library py-graph. Thanks a lot for including our library! Just to inform you that we updated our library and now there are implementations for 8 graph kernels. We also upload our library to PyPI. Thanks!

    opened by jajupmochi 2
  • Missing SAGPool

    Missing SAGPool

    Attention-based pooling operator without having to learn n^2 cluster-assignment matrix as in DiffPool. paper: https://arxiv.org/abs/1904.08082 code: https://github.com/inyeoplee77/SAGPool

    opened by choltz95 2
  • Add a paper regarding to semi-supervised heterogenous graph embedding

    Add a paper regarding to semi-supervised heterogenous graph embedding

    hi, i'm trying to add our paper on semi-supervised heterogenous graph embedding to your awesome repository. it was cited 60+ times. hope you accept the pull request. thanks!

    opened by chentingpc 2
  • KDD2020 Paper

    KDD2020 Paper

    Hi,

    in our KDD2020 work we solve a graph classification problem with nice results!

    Paper: https://dl.acm.org/doi/10.1145/3394486.3403383 Code: https://github.com/tlancian/contrast-subgraph

    Would you add it to the repo?

    Thank you, Tommaso

    opened by tlancian 1
  • some other graph level classification papers

    some other graph level classification papers

    Hi, those are some other graph level classification papers for your information Graph Kernel: "A Graph Kernel Based on the Jensen-Shannon Representation Alignment" IJCAI 2015 Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock paper: http://ijcai.org/Proceedings/15/Papers/468.pdf code: https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015

    “An Aligned Subtree Kernel for Weighted Graphs” ICML 2015 Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock paper: http://proceedings.mlr.press/v37/bai15.pdf code will be released soon

    Deep Learning: "Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification" ECML-PKDD 2019 Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock paper: https://arxiv.org/abs/1904.04238 code: https://github.com/baiuoy/ASGCN_ECML-PKDD2019 (will be released soon)

    opened by David-AJ 1
  • Add Ego-CNN (ICML'19) and fix 1 typo

    Add Ego-CNN (ICML'19) and fix 1 typo

    Hi, thanks for this awesome repo on graph classification. Please help review the PR. I'd like to add our paper and help clarify 1 workshop paper.

    Thanks, Ruochun

    opened by rctzeng 1
  • A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    Hi,

    Thank you for your paper list. I am the author of the paper A Simple Yet Effective Baseline for Non-Attribute Graph Classification. It has been accepted by ICLR 2019 graph representation learning workshop (https://rlgm.github.io/). Would you like to update the record? Thanks!

    Best, Chen

    opened by Chen-Cai-OSU 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022