Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Overview

Lyft Motion Prediction for Autonomous Vehicles

Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle.

Directory structure

input               --- Please locate data here
src
|-ensemble          --- For 4. Ensemble scripts
|-lib               --- Library codes
|-modeling          --- For 1. training, 2. prediction and 3. evaluation scripts
  |-results         --- Training, prediction and evaluation results will be stored here
README.md           --- This instruction file
requirements.txt    --- For python library versions

Hardware (The following specs were used to create the original solution)

  • Ubuntu 18.04 LTS
  • 32 CPUs
  • 128GB RAM
  • 8 x NVIDIA Tesla V100 GPUs

Software (python packages are detailed separately in requirements.txt):

Python 3.8.5 CUDA 10.1.243 cuddn 7.6.5 nvidia drivers v.55.23.0 -- Equivalent Dockerfile for the GPU installs: Use nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04 as base image

Also, we installed OpenMPI==4.0.4 for running pytorch distributed training.

Python Library

Deep learning framework, base library

  • torch==1.6.0+cu101
  • torchvision==0.7.0
  • l5kit==1.1.0
  • cupy-cuda101==7.0.0
  • pytorch-ignite==0.4.1
  • pytorch-pfn-extras==0.3.1

CNN models

Data processing/augmentation

  • albumentations==0.4.3
  • scikit-learn==0.22.2.post1

We also installed apex https://github.com/nvidia/apex

Please refer requirements.txt for more details.

Environment Variable

We recommend to set following environment variables for better performance.

export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
export NUMEXPR_NUM_THREADS=1

Data setup

Please download competition data:

For the lyft-motion-prediction-autonomous-vehicles dataset, extract them under input/lyft-motion-prediction-autonomous-vehicles directory.

For the lyft-full-training-set data which only contains train_full.zarr, please place it under input/lyft-motion-prediction-autonomous-vehicles/scenes as follows:

input
|-lyft-motion-prediction-autonomous-vehicles
  |-scenes
    |-train_full.zarr (Place here!)
    |-train.zarr
    |-validate.zarr
    |-test.zarr
    |-... (other data)
  |-... (other data)

Pipeline

Our submission pipeline consists of 1. Training, 2. Prediction, 3. Ensemble.

Training with training/validation dataset

The training script is located under src/modeling.

train_lyft.py is the training script and the training configuration is specified by flags yaml file.

[Note] If you want to run training from scratch, please remove results folder once. The training script tries to resume from results folder when resume_if_possible=True is set.

[Note] For the first time of training, it creates cache for training to run efficiently. This cache creation should be done in single process, so please try with the single GPU training until training loop starts. The cache is directly created under input directory.

Once the cache is created, we can run multi-GPU training using same train_lyft.py script, with mpiexec command.

$ cd src/modeling

# Single GPU training (Please run this for first time, for input data cache creation)
$ python train_lyft.py --yaml_filepath ./flags/20201104_cosine_aug.yaml

# Multi GPU training (-n 8 for 8 GPU training)
$ mpiexec -x MASTER_ADDR=localhost -x MASTER_PORT=8899 -n 8 \
  python train_lyft.py --yaml_filepath ./flags/20201104_cosine_aug.yaml

We have trained 9 different models for final submission. Each training configuration can be found in src/modeling/flags, and the training results are located in src/modeling/results.

Prediction for test dataset

predict_lyft.py under src/modeling executes the prediction for test data.

Specify out as trained directory, the script uses trained model of this directory to inference. Please set --convert_world_from_agent true after l5kit==1.1.0.

$ cd src/modeling
$ python predict_lyft.py --out results/20201104_cosine_aug --use_ema true --convert_world_from_agent true

Predicted results are stored under out directory. For example, results/20201104_cosine_aug/prediction_ema/submission.csv is created with above setting.

We executed this prediction for all 9 trained models. We can submit this submission.csv file as the single model prediction.

(Optional) Evaluation with validation dataset

eval_lyft.py under src/modeling executes the evaluation for validation data (chopped data).

python eval_lyft.py --out results/20201104_cosine_aug --use_ema true

The script shows validation error, which is useful for local evaluation of model performance.

Ensemble

Finally all trained models' predictions are ensembled using GMM fitting.

The ensemble script is located under src/ensemble.

# Please execute from root of this repository.
$ python src/ensemble/ensemble_test.py --yaml_filepath src/ensemble/flags/20201126_ensemble.yaml

The location of final ensembled submission.csv is specified in the yaml file. You can submit this submission.csv by uploading it as dataset, and submit via Kaggle kernel. Please follow Save your time, submit without kernel inference for the submission procedure.

Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022