Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

Overview

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu

https://openreview.net/forum?id=RLtqs6pzj1-

Abstract: The success of deep ensembles on improving predictive performance, uncertainty, and out-of-distribution robustness has been extensively demonstrated in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at test lead to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs compared to a single dense model. This seemingly counter-intuitive outcome is due to the ultra training efficiency of dynamic sparse training. FreeTickets improves over the dense baseline in the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, and training/inference efficiency. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 training FLOPs required by the latter.

This code base is created by Shiwei Liu [email protected] during his Ph.D. at Eindhoven University of Technology.

Requirements

Python 3.6, PyTorch v1.5.1, and CUDA v10.2.

How to Run Experiments

CIFAR-10/100 Experiments

To train Wide ResNet28-10 on CIFAR10/100 with DST ensemble at sparsity 0.8:

python main_DST.py --sparse --model wrn-28-10 --data cifar10 --seed 17 --sparse-init ERK \
--update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.8 \
--growth gradient --death magnitude --redistribution none --epochs 250 --density 0.2

To train Wide ResNet28-10 on CIFAR10/100 with EDST ensemble at sparsity 0.8:

python3 main_EDST.py --sparse --model wrn-28-10 --data cifar10 --nolrsche \
--decay-schedule constant --seed 17 --epochs-explo 150 --model-num 3 --sparse-init ERK \
--update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.8 \
--growth gradient --death magnitude --redistribution none --epochs 450 --density 0.2

[Training module] The training module is controlled by the following arguments:

  • --epochs-explo - An integer that controls the training epochs of the exploration phase.
  • --model-num - An integer, the number free tickets to produce.
  • --large-death-rate - A float, the ratio of parameters to explore for each refine phase.
  • --density - An float, the density (1-sparsity) level for each free ticket.

To train Wide ResNet28-10 on CIFAR10/100 with PF (prung and finetuning) ensemble at sparsity 0.8:

First, we need train a dense model with:

python3 main_individual.py  --model wrn-28-10 --data cifar10 --decay-schedule cosine --seed 18 \
--sparse-init ERK --update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.5 \
--growth gradient --death magnitude --redistribution none --epochs 250 --density 0.2

Then, perform pruning and finetuning with:

pretrain='results/wrn-28-10/cifar10/individual/dense/18.pt'
python3 main_PF.py --sparse --model wrn-28-10 --resume --pretrain $pretrain --lr 0.001 \
--fix --data cifar10 --nolrsche --decay-schedule constant --seed 18 
--epochs-fs 150 --model-num 3 --sparse-init pruning --update-frequency 1000 --batch-size 128 \
--death-rate 0.5 --large-death-rate 0.8 --growth gradient --death magnitude \
--redistribution none --epochs $epoch --density 0.2

After finish the training of various ensemble methods, run the following commands for test ensemble:

resume=results/wrn-28-10/cifar10/density_0.2/EDST/M=3/
python ensemble_freetickets.py --mode predict --resume $resume --dataset cifar10 --model wrn-28-10 \
--seed 18 --test-batch-size 128
  • --resume - An folder path that contains the all the free tickets obtained during training.
  • --mode - An str that control the evaluation mode, including: predict, disagreement, calibration, KD, and tsne.

ImageNet Experiments

cd ImageNet
python $1multiproc.py --nproc_per_node 2 $1main.py --sparse_init ERK --multiplier 1 --growth gradient --seed 17 --master_port 4545 -j5 -p 500 --arch resnet50 -c fanin --update_frequency 4000 --label-smoothing 0.1 -b 64 --lr 0.1 --warmup 5 --epochs 310 --density 0.2 $2 ../data/

Citation

if you find this repo is helpful, please cite

@inproceedings{
liu2022deep,
title={Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity},
author={Shiwei Liu and Tianlong Chen and Zahra Atashgahi and Xiaohan Chen and Ghada Sokar and Elena Mocanu and Mykola Pechenizkiy and Zhangyang Wang and Decebal Constantin Mocanu},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=RLtqs6pzj1-}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022