Boundary IoU API (Beta version)

Overview

Boundary IoU API (Beta version)

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov

[arXiv] [Project] [BibTeX]

This API is an experimental version of Boundary IoU for 5 datasets:

To install Boundary IoU API, run:

pip install git+https://github.com/bowenc0221/boundary-iou-api.git

or

git clone [email protected]:bowenc0221/boundary-iou-api.git
cd boundary_iou_api
pip install -e .

Summary of usage

We provide two ways to use this api, you can either replace imports with our api or do offline evaluation.

Replacing imports

Our Boundary IoU API supports both evaluation with Mask IoU and Boundary IoU with the same interface as original ones. Thus, you only need to change the import, without worried about breaking your existing code.

  1. COCO instance segmentation
    replace

    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    with

    from boundary_iou.coco_instance_api.coco import COCO
    from boundary_iou.coco_instance_api.cocoeval import COCOeval

    and set

    COCOeval(..., iouType="boundary")
  2. LVIS instance segmentation
    replace

    from lvis import LVISEval

    with

    from boundary_iou.lvis_instance_api.eval import LVISEval

    and set

    LVISEval(..., iou_type="boundary")
  3. Cityscapes instance segmentation
    replace

    import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval

    with

    import boundary_iou.cityscapes_instance_api.evalInstanceLevelSemanticLabeling as cityscapes_eval

    and set

    cityscapes_eval.args.iou_type = "boundary"
  4. COCO panoptic segmentation
    replace

    from panopticapi.evaluation import pq_compute

    with

    from boundary_iou.coco_panoptic_api.evaluation import pq_compute

    and set

    pq_compute(..., iou_type="boundary")
  5. Cityscapes panoptic segmentation
    replace

    from cityscapesscripts.evaluation.evalPanopticSemanticLabeling as evaluatePanoptic

    with

    from boundary_iou.cityscapes_panoptic_api.evalPanopticSemanticLabeling import evaluatePanoptic

    and set

    evaluatePanoptic(..., iou_type="boundary")

Offline evaluation

We also provide evaluation code that can evaluates your prediction files for each dataset.

  1. COCO instance segmentation

    python ./tools/coco_instance_evaluation.py \
        --gt-json-file COCO_GT_JSON \
        --dt-json-file COCO_DT_JSON \
        --iou-type boundary
  2. LVIS instance segmentation

    python ./tools/lvis_instance_evaluation.py \
        --gt-json-file LVIS_GT_JSON \
        --dt-json-file LVIS_DT_JSON \
        --iou-type boundary
  3. Cityscapes instance segmentation

    python ./tools/cityscapes_instance_evaluation.py \
        --gt_dir GT_DIR \
        --result_dir RESULT_DIR \
        --iou-type boundary
  4. COCO panoptic segmentation

    python ./tools/coco_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary
  5. Cityscapes panoptic segmentation

    python ./tools/cityscapes_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary

Citing Boundary IoU

If you find Boundary IoU helpful in your research or wish to refer to the referenced results, please use the following BibTeX entry.

@inproceedings{cheng2021boundary,
  title={Boundary {IoU}: Improving Object-Centric Image Segmentation Evaluation},
  author={Bowen Cheng and Ross Girshick and Piotr Doll{\'a}r and Alexander C. Berg and Alexander Kirillov},
  booktitle={CVPR},
  year={2021}
}

Contact

If you have any questions regarding this API, please contact us at bcheng9 AT illinois.edu

Owner
Bowen Cheng
Ph.D. at University of Illinois Urbana-Champaign
Bowen Cheng
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Syed Waqas Zamir 906 Dec 30, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022