Unbiased Learning To Rank Algorithms (ULTRA)

Overview
logo

Unbiased Learning to Rank Algorithms (ULTRA)

Python 3.6 Documentation Status Build Status codecov License follow on Twitter

🔥 News: A TensorFlow version of this package can be found in ULTRA.

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels. With the unified data processing pipeline, ULTRA supports multiple unbiased learning-to-rank algorithms, online learning-to-rank algorithms, neural learning-to-rank models, as well as different methods to use and simulate noisy labels (e.g., clicks) to train and test different algorithms/ranking models. A user-friendly documentation can be found here.

Get Started

Create virtual environment (optional):

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install ULTRA from the source:

git clone https://github.com/ULTR-Community/ULTRA_pytorch.git
cd ULTRA
make init

Run toy example:

bash example/toy/offline_exp_pipeline.sh

Structure

structure

Input Layers

  1. ClickSimulationFeed: this is the input layer that generate synthetic clicks on fixed ranked lists to feed the learning algorithm.

  2. DeterministicOnlineSimulationFeed: this is the input layer that first create ranked lists by sorting documents according to the current ranking model, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  3. StochasticOnlineSimulationFeed: this is the input layer that first create ranked lists by sampling documents based on their scores in the current ranking model and the Plackett-Luce distribution, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  4. DirectLabelFeed: this is the input layer that directly feed the true relevance labels of each documents to the learning algorithm.

Learning Algorithms

  1. NA: this model is an implementation of the naive algorithm that directly train models with input labels (e.g., clicks).

  2. DLA: this is an implementation of the Dual Learning Algorithm in Unbiased Learning to Rank with Unbiased Propensity Estimation.

  3. IPW: this model is an implementation of the Inverse Propensity Weighting algorithms in Learning to Rank with Selection Bias in Personal Search and Unbiased Learning-to-Rank with Biased Feedback

  4. REM: this model is an implementation of the regression-based EM algorithm in Position bias estimation for unbiased learning to rank in personal search

  5. PD: this model is an implementation of the pairwise debiasing algorithm in Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.

  6. DBGD: this model is an implementation of the Dual Bandit Gradient Descent algorithm in Interactively optimizing information retrieval systems as a dueling bandits problem

  7. MGD: this model is an implementation of the Multileave Gradient Descent in Multileave Gradient Descent for Fast Online Learning to Rank

  8. NSGD: this model is an implementation of the Null Space Gradient Descent algorithm in Efficient Exploration of Gradient Space for Online Learning to Rank

  9. PDGD: this model is an implementation of the Pairwise Differentiable Gradient Descent algorithm in Differentiable unbiased online learning to rank

Ranking Models

  1. Linear: this is a linear ranking algorithm that compute ranking scores with a linear function.

  2. DNN: this is neural ranking algorithm that compute ranking scores with a multi-layer perceptron network (with non-linear activation functions).

  3. DLCM: this is an implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement (TODO).

  4. GSF: this is an implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks (TODO).

  5. SetRank: this is an implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval (TODO).

Supported Evaluation Metrics

  1. MRR: the Mean Reciprocal Rank.

  2. ERR: the Expected Reciprocal Rank from Expected reciprocal rank for graded relevance.

  3. ARP: the Average Relevance Position.

  4. NDCG: the Normalized Discounted Cumulative Gain.

  5. DCG: the Discounted Cumulative Gain.

  6. Precision: the Precision.

  7. MAP: the Mean Average Precision.

  8. Ordered_Pair_Accuracy: the percentage of correctedly ordered pair.

Click Simulation Example

Create click models for click simulations

python ultra/utils/click_models.py pbm 0.1 1 4 1.0 example/ClickModel

* The output is a json file containing the click mode that could be used for click simulation. More details could be found in the code.

(Optional) Estimate examination propensity with result randomization

python ultra/utils/propensity_estimator.py example/ClickModel/pbm_0.1_1.0_4_1.0.json 
   
     example/PropensityEstimator/

   

* The output is a json file containing the estimated examination propensity (used for IPW). DATA_DIR is the directory for the prepared data created by ./libsvm_tools/prepare_exp_data_with_svmrank.py. More details could be found in the code.

Citation

If you use ULTRA in your research, please use the following BibTex entry.

@misc{tran2021ultra,
      title={ULTRA: An Unbiased Learning To Rank Algorithm Toolbox}, 
      author={Anh Tran and Tao Yang and Qingyao Ai},
      year={2021},
      eprint={2108.05073},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

@article{10.1145/3439861,
author = {Ai, Qingyao and Yang, Tao and Wang, Huazheng and Mao, Jiaxin},
title = {Unbiased Learning to Rank: Online or Offline?},
year = {2021},
issue_date = {February 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {39},
number = {2},
issn = {1046-8188},
url = {https://doi.org/10.1145/3439861},
doi = {10.1145/3439861},
journal = {ACM Trans. Inf. Syst.},
month = feb,
articleno = {21},
numpages = {29},
keywords = {unbiased learning, online learning, Learning to rank}
}

Development Team

​ ​ ​ ​

​ QingyaoAi
​ Qingyao Ai ​

Core Dev
ASST PROF, Univ. of Utah

​
​ anhtran1010
​ Anh Tran ​

Core Dev
Ph.D., Univ. of Utah

​
Taosheng-ty
Tao Yang ​

Core Dev
Ph.D., Univ. of Utah

​
​ huazhengwang
Huazheng Wang

Core Dev
Ph.D., Univ. of Virginia

​
​ defaultstr
​ Jiaxin Mao

Core Dev
ASST PROF, Renmin Univ.

​

Contribution

Please read the Contributing Guide before creating a pull request.

Project Organizers

  • Qingyao Ai
    • School of Computing, University of Utah
    • Homepage

License

Apache-2.0

Copyright (c) 2020-present, Qingyao Ai (QingyaoAi) "# Pytorch_ULTRA"

Owner
Facilitating the design, comparison and sharing of unbiased and online learning to rank algorithms.
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022