DABO: Data Augmentation with Bilevel Optimization

Overview

License

figure figure

DABO: Data Augmentation with Bilevel Optimization [Paper]

The goal is to automatically learn an efficient data augmentation regime for image classification.

Accepted at WACV2021

Table of Contents

Overview

What's new: This method provides a way to automatically learn data augmentation in order to improve the image classification performance. It does not require us to hard code augmentation techniques, which might need domain knowledge or an expensive hyper-parameter search on the validation set.

Key insight: Our method efficiently trains a network that performs data augmentation. This network learns data augmentation by usiing the gradient that flows from computing the classifier's validation loss using an online version of bilevel optimization. We also perform truncated back-propagation in order to significantly reduce the computational cost of bilevel optimization.

How it works: Our method jointly trains a classifier and an augmentation network through the following steps,

figure

  • For each mini batch,a forward pass is made to calculate the training loss.
  • Based on the training loss and the gradient of the training loss, an optimization step is made for the classifier in the inner loop.
  • A forward pass is then made on the classifier with the new weight to calculate the validation loss.
  • The gradient from the validation loss is backpropagated to train the augmentation network.

Results: Our model obtains better results than carefuly hand engineered transformations and GAN-based approaches. Further, the results are competitive against methods that use a policy search on CIFAR10, CIFAR100, BACH, Tiny-Imagenet and Imagenet datasets.

Why it matters: Proper data augmentation can significantly improve generalization performance. Unfortunately, deriving these augmentations require domain expertise or extensive hyper-parameter search. Thus, having an automatic and quick way of identifying efficient data augmentation has a big impact in obtaining better models.

Where to go from here: Performance can be improved by extending the set of learned transformations to non-differentiable transformations. The estimation of the validation loss could also be improved by exploring more the influence of the number of iteration in the inner loop. Finally, the method can be extended to other tasks like object detection of image segmentation.

Experiments

1. Install requirements: Run this command to install the Haven library which helps in managing experiments.

pip install -r requirements.txt

2.1 CIFAR10 experiments: The followng command runs the training and validation loop for CIFAR.

python trainval.py -e cifar -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

2.2 BACH experiments: The followng command runs the training and validation loop on BACH dataset.

python trainval.py -e bach -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

3. Results: Display the results by following the steps below,

figure

Launch Jupyter by running the following on terminal,

jupyter nbextension enable --py widgetsnbextension
jupyter notebook

Then, run the following script on a Jupyter cell,

from haven import haven_jupyter as hj
from haven import haven_results as hr
from haven import haven_utils as hu

# path to where the experiments got saved
savedir_base = ''
exp_list = None

# exp_list = hu.load_py().EXP_GROUPS[]
# get experiments
rm = hr.ResultManager(exp_list=exp_list, 
                      savedir_base=savedir_base, 
                      verbose=0
                     )
y_metrics = ['test_acc']
bar_agg = 'max'
mode = 'bar'
legend_list = ['model.netA.name']
title_list = 'dataset.name'
legend_format = 'Augmentation Netwok: {}'
filterby_list = {'dataset':{'name':'cifar10'}, 'model':{'netC':{'name':'resnet18_meta_2'}}}

# launch dashboard
hj.get_dashboard(rm, vars(), wide_display=True)

Citation

@article{mounsaveng2020learning,
  title={Learning Data Augmentation with Online Bilevel Optimization for Image Classification},
  author={Mounsaveng, Saypraseuth and Laradji, Issam and Ayed, Ismail Ben and Vazquez, David and Pedersoli, Marco},
  journal={arXiv preprint arXiv:2006.14699},
  year={2020}
}
Owner
ElementAI
ElementAI
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023