Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Related tags

Deep LearningHGNet
Overview

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Results

We apply three KGQA benchmarks to evaluate our approach, ComplexWebQuestions (Talmor and Berant, 2018), LC-QuAD (Trivedi et al., 2017), and WebQSP (Yih et al., 2016).

Dataset Structure Acc. Query Graph Acc. Precision Recall F1-score [email protected]
ComplexWebQuestions 66.96 51.68 65.27 68.44 64.95 65.25
LC-QuAD 78.00 60.90 75.82 75.22 75.10 76.00
WebQSP 79.91 62.63 70.22 74.38 70.61 70.37

Requirements

  • Python == 3.7.0
  • cudatoolkit == 10.1.243
  • cudnn == 7.6.5
  • six == 1.15.0
  • torch == 1.4.0
  • transformers == 4.9.2
  • numpy == 1.19.2
  • SPARQLWrapper == 1.8.5
  • rouge_score == 0.0.4
  • filelock == 3.0.12
  • nltk == 3.6.2
  • absl == 0.0
  • dataclasses == 0.6
  • datasets == 1.9.0
  • jsonlines == 2.0.0
  • python_Levenshtein == 0.12.2
  • Virtuoso SPARQL query service

Data

  • Download and unzip our preprocessed data to ./, you can also running our scripts under ./preprocess to obtain them again.

  • Download our used Freebase and DBpedia. Both of them only contain English triples by removing other languages. Download and install Virtuoso to conduct the SPARQL query service for the downloaded Freebase and DBpedia. Here is a tutorial on how to install Virtuoso and import the knowledge graph into it.

  • Download GloVe Embedding glove.42B.300d.txt and put it to your_glove_path.

  • Download our vocabulary from here. Unzip and put it under ./. It contains our used SPARQL cache for Execution-Guided strategy.

Running Code

1. Training for HGNet

Before training, first set the following hyperparameter in train_cwq.sh, train_lcq.sh, and train_wsp.sh.

--glove_path your_glove_path

Execute the following command for training model on ComplexWebQuestions.

sh train_cwq.sh

Execute the following command for training model on LC-QuAD.

sh train_lcq.sh

Execute the following command for training model on WebQSP.

sh train_wsp.sh

The trained model file is saved under ./runs directory.
The path format of the trained model is ./runs/RUN_ID/checkpoints/best_snapshot_epoch_xx_best_val_acc_xx_model.pt.

2. Testing for HGNet

Before testing, need to train a model first and set the following hyperparameters in eval_cwq.sh, eval_lcq.sh, and eval_wsp.sh.

--cpt your_trained_model_path
--kb_endpoint your_sparql_service_ip

You can also directly download our trained models from here. Unzip and put it under ./.

Execute the following command for testing the model on ComplexWebQuestions.

sh eval_cwq.sh

Execute the following command for testing the model on LC-QuAD.

sh eval_lcq.sh

Execute the following command for testing the model on WebQSP.

sh eval_wsp.sh
Owner
Yongrui Chen
Yongrui Chen
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023