Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Overview

KnowPrompt

Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Requirements

To install requirements:

pip install -r requirements.txt

Datasets

We provide all the datasets and prompts used in our experiments.

The expected structure of files is:

knowprompt
 |-- dataset
 |    |-- semeval
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- dialogue
 |    |    |-- train.json       
 |    |    |-- dev.json
 |    |    |-- test.json
 |    |    |-- rel2id.json
 |    |-- tacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- tacrev
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- retacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |-- scripts
 |    |-- semeval.sh
 |    |-- dialogue.sh
 |    |-- ...
 

Run the experiments

Initialize the answer words

Use the comand below to get the answer words to use in the training.

python get_label_word.py --model_name_or_path bert-large-uncased  --dataset_name semeval

The {answer_words}.ptwill be saved in the dataset, you need to assign the model_name_or_path and dataset_name in the get_label_word.py.

Split dataset

Download the data first, and put it to dataset folder. Run the comand below, and get the few shot dataset.

python generate_k_shot.py --data_dir ./dataset --k 8 --dataset semeval
cd dataset
cd semeval
cp rel2id.json val.txt test.txt ./k-shot/8-1

You need to modify the k and dataset to assign k-shot and dataset. Here we default seed as 1,2,3,4,5 to split each k-shot, you can revise it in the generate_k_shot.py

Let's run

Our script code can automatically run the experiments in 8-shot, 16-shot, 32-shot and standard supervised settings with both the procedures of train, eval and test. We just choose the random seed to be 1 as an example in our code. Actually you can perform multiple experments with different seeds.

Example for SEMEVAL

Train the KonwPrompt model on SEMEVAL with the following command:

>> bash scripts/semeval.sh  # for roberta-large

As the scripts for TACRED-Revist, Re-TACRED, Wiki80 included in our paper are also provided, you just need to run it like above example.

Example for DialogRE

As the data format of DialogRE is very different from other dataset, Class of processor is also different. Train the KonwPrompt model on DialogRE with the following command:

>> bash scripts/dialogue.sh  # for roberta-base
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022